Question Number 97129 by Ar Brandon last updated on 06/Jun/20
$$\mathrm{Given}\:\:\mathrm{z}=\mathrm{x}+\mathrm{iy}\:\:\mathrm{z}\in\mathbb{C}\:\:\mathrm{z}\neq\mathrm{0} \\ $$$$\mathrm{1}\backslash\:\mathrm{A},\:\mathrm{B},\:\mathrm{and}\:\mathrm{C}\:\mathrm{are}\:\mathrm{the}\:\mathrm{images}\:\mathrm{of}\:\mathrm{z},\:\mathrm{iz},\:\mathrm{and}\:\left(\mathrm{2}−\mathrm{i}\right)+\mathrm{z} \\ $$$$\mathrm{a}\backslash\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{lengths}\:\mathrm{AB},\:\mathrm{AC},\:\mathrm{and}\:\mathrm{BC}. \\ $$$$\mathrm{b}\backslash\:\mathrm{Deduce}\:\mathrm{that}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{is}\:\mathrm{isosceles}\:\mathrm{and}\:\mathrm{not} \\ $$$$\mathrm{equilateral}. \\ $$$$\mathrm{2}\backslash\mathrm{Find}\:\mathrm{z},\:\mathrm{such}\:\mathrm{that}\:\mid\mathrm{z}\mid=\mid\frac{\mathrm{2}+\mathrm{i}}{\mathrm{z}}\mid=\mid\mathrm{z}−\mathrm{1}\mid \\ $$$$\mathrm{3}\backslash\mathrm{Given}\:\mathrm{Z},\:\mathrm{Z}\in\mathbb{C}\:\mathrm{such}\:\mathrm{that}\:\frac{\mathrm{Z}−\mathrm{1}}{\mathrm{Z}+\mathrm{1}}=\left(\frac{\mathrm{z}−\mathrm{1}}{\mathrm{z}+\mathrm{1}}\right)^{\mathrm{2}} \\ $$$$\mathrm{a}\backslash\mathrm{Express}\:\mathrm{Z}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{z} \\ $$$$\mathrm{b}\backslash\mathrm{What}\:\mathrm{can}\:\mathrm{we}\:\mathrm{say}\:\mathrm{of}\:\mathrm{the}\:\mathrm{images}\:\mathrm{of}\:\mathrm{Z},\:\mathrm{z},\:\mathrm{and}\:\frac{\mathrm{1}}{\mathrm{z}}\:? \\ $$