Menu Close

Given-z-xy-4y-2-x-2-4y-2-x-y-0-find-minimum-and-maximum-value-of-z-




Question Number 96306 by bemath last updated on 31/May/20
Given z = ((xy−4y^2 )/(x^2 +4y^2 )) , x,y≠0  find minimum and maximum  value of z
Givenz=xy4y2x2+4y2,x,y0findminimumandmaximumvalueofz
Commented by john santu last updated on 31/May/20
(1) (∂z/∂x) = ((y(x^2 +4y^2 )−2x(xy−4y^2 ))/((x^2 +4y^2 )^2 )) =0  x^2 y+4y^3 −2x^2 y+8xy^2 =0  4y^3 +8xy^2 −x^2 y=0  y(4y^2 +8xy−x^2 )=0⇒4y^2 +8xy−x^2 =0  (2) (∂z/∂y) = (((x−8y)(x^2 +4y^2 )−8y(xy−4y^2 ))/((x^2 +4y^2 )^2 )) =0  x^3 +4xy^2 −8x^2 y−32y^3 −8xy^2 +32y^3 =0  x(x^2 −4y^2 −8y) =0⇒x^2 −4y^2 −8y=0  adding (1) and (2)  x^2 −4y^2 −8y = 0  −x^2 +4y^2 +8xy =0  −−−−−−−−−+  8xy−8y = 0 ⇒8y(x−1) = 0  x = 1 ⇒4y^2 +8y−1=0  y^2 +2y−(1/4) =0   (y+1)^2  = (5/4) ; y = −1± ((√5)/2)  we get critical point are  (1, −1+ ((√5)/2)) & (1,−1−((√5)/2))  z(1,−1+((√5)/2)) = ((((−2+(√5))/2)−4((9/4)−(√5)))/(1+(9/4)−(√5)))  = ((−4+2(√5)−36+16(√5))/(13−4(√5))) = ((18(√5)−40)/(13−4(√5))) ≈ 0.061  z(1,−1−((√5)/2))=((((−2−(√5))/2)−4((9/4)+(√5)))/(1+(9/4)+(√5))) = ((−4−2(√5)−36−16(√5))/(13+4(√5)))  =((−18(√5)−40)/(13+4(√5) )) ≈ −3.6569
(1)zx=y(x2+4y2)2x(xy4y2)(x2+4y2)2=0x2y+4y32x2y+8xy2=04y3+8xy2x2y=0y(4y2+8xyx2)=04y2+8xyx2=0(2)zy=(x8y)(x2+4y2)8y(xy4y2)(x2+4y2)2=0x3+4xy28x2y32y38xy2+32y3=0x(x24y28y)=0x24y28y=0adding(1)and(2)x24y28y=0x2+4y2+8xy=0+8xy8y=08y(x1)=0x=14y2+8y1=0y2+2y14=0(y+1)2=54;y=1±52wegetcriticalpointare(1,1+52)&(1,152)z(1,1+52)=2+524(945)1+945=4+2536+1651345=1854013450.061z(1,152)=2524(94+5)1+94+5=4253616513+45=1854013+453.6569

Leave a Reply

Your email address will not be published. Required fields are marked *