Menu Close

Gravitational-potential-of-a-ring-of-radius-R-and-mass-M-on-the-axis-at-a-distance-x-from-the-center-is-given-by-v-x-GM-R-2-x-2-Nm-kg-Using-the-above-expression-find-the-gravitationa




Question Number 15052 by Tinkutara last updated on 07/Jun/17
Gravitational potential of a ring of  radius R and mass M on the axis at a  distance x from the center is given by  v(x) = − ((GM)/( (√(R^2  + x^2 )))) Nm/kg  Using the above expression find the  gravitational potential of the disc of  mass M and radius R on the axis at a  distance x from the center of the disc.
GravitationalpotentialofaringofradiusRandmassMontheaxisatadistancexfromthecenterisgivenbyv(x)=GMR2+x2Nm/kgUsingtheaboveexpressionfindthegravitationalpotentialofthediscofmassMandradiusRontheaxisatadistancexfromthecenterofthedisc.
Commented by Tinkutara last updated on 07/Jun/17
Commented by Tinkutara last updated on 07/Jun/17
But answer is ((−2M)/R^2 )[(√(R^2  + x^2 )) − x]
Butansweris2MR2[R2+x2x]
Commented by mrW1 last updated on 07/Jun/17
((−2GM)/R^2 )[(√(R^2  + x^2 )) − x]   =((−2GM)/R^2 )[(√(R^2  + x^2 )) − x]×(([(√(R^2 +x^2 ))+x])/( (√(R^2 +x^2 ))+x))   =((−2GM)/R^2 )[R^2  + x^2  − x^2 ]×(1/( (√(R^2 +x^2 ))+x))   =−((2GM)/( (√(R^2 +x^2 ))+x))
2GMR2[R2+x2x]=2GMR2[R2+x2x]×[R2+x2+x]R2+x2+x=2GMR2[R2+x2x2]×1R2+x2+x=2GMR2+x2+x
Commented by Tinkutara last updated on 07/Jun/17
Thanks Sir!
ThanksSir!
Answered by ajfour last updated on 07/Jun/17
  dv=−((GdM)/( (√(r^2 +x^2 ))))=−((G(σ)(2πrdr))/( (√(r^2 +x^2 ))))     v =−πσG∫_0 ^(  R) (((2rdr)/( (√(r^2 +x^2 )))))        =−πσG[2(√(r^2 +x^2 )) ]_(r=0) ^(r=R)         =−2πσG((√(R^2 +x^2 ))−R)         =−2πG((M/(πR^2 )))((√(R^2 +x^2 ))−R)     v(x)_(disc)  =−((2GM)/R^2 )((√(R^2 −x^2 ))−R) .
dv=GdMr2+x2=G(σ)(2πrdr)r2+x2v=πσG0R(2rdrr2+x2)=πσG[2r2+x2]r=0r=R=2πσG(R2+x2R)=2πG(MπR2)(R2+x2R)v(x)disc=2GMR2(R2x2R).
Commented by Tinkutara last updated on 07/Jun/17
Thanks Sir!
ThanksSir!
Answered by mrW1 last updated on 07/Jun/17
m=(M/(πR^2 )) [kg/m^2 ]  v_d (x)=−G∫_0 ^R  ((m2πrdr)/( (√(r^2 +x^2 ))))=−((GM)/R^2 )∫_0 ^R ((2rdr)/( (√(r^2 +x^2 ))))  =−((GM)/R^2 )∫_0 ^R (dr^2 /( (√(r^2 +x^2 ))))  =−((2GM)/R^2 )[(√(r^2 +x^2 ))]_0 ^R   =−((2GM)/R^2 )[(√(R^2 +x^2 ))−x]  =−((2GM)/R^2 )[(√(R^2 +x^2 ))−x]×(([(√(R^2 +x^2 ))+x])/([(√(R^2 +x^2 ))+x]))  =−((2GM)/(x+(√(R^2 +x^2 ))))
m=MπR2[kg/m2]vd(x)=G0Rm2πrdrr2+x2=GMR20R2rdrr2+x2=GMR20Rdr2r2+x2=2GMR2[r2+x2]0R=2GMR2[R2+x2x]=2GMR2[R2+x2x]×[R2+x2+x][R2+x2+x]=2GMx+R2+x2
Commented by mrW1 last updated on 07/Jun/17
I write the formula in this form to  make its physical meaning more clear:  the distance to the center of  disc is x, the distance to the edge of  disc is (√(R^2 +x^2 ))  the average distance to disc is   d_m =((x+(√(R^2 +x^2 )))/2)  v_d (x)=−((GM)/d_m )=−((2GM)/(x+(√(R^2 +x^2 ))))
Iwritetheformulainthisformtomakeitsphysicalmeaningmoreclear:thedistancetothecenterofdiscisx,thedistancetotheedgeofdiscisR2+x2theaveragedistancetodiscisdm=x+R2+x22vd(x)=GMdm=2GMx+R2+x2

Leave a Reply

Your email address will not be published. Required fields are marked *