Menu Close

h-52-47i-1-3-52-47i-1-3-find-h-2-




Question Number 154286 by EDWIN88 last updated on 16/Sep/21
 h = ((52−47i))^(1/3)  +((52+47i))^(1/3)     find h^2 .
$$\:{h}\:=\:\sqrt[{\mathrm{3}}]{\mathrm{52}−\mathrm{47}{i}}\:+\sqrt[{\mathrm{3}}]{\mathrm{52}+\mathrm{47}{i}}\: \\ $$$$\:{find}\:{h}^{\mathrm{2}} . \\ $$
Commented by MJS_new last updated on 16/Sep/21
r^(1/3) e^(iθ/3) +r^(1/3) e^(−iθ/3)  is unique ⇒ h∈R is unique  in this case h=8  not only by squaring we get false solutions,  but in general by exponentiation
$${r}^{\mathrm{1}/\mathrm{3}} \mathrm{e}^{\mathrm{i}\theta/\mathrm{3}} +{r}^{\mathrm{1}/\mathrm{3}} \mathrm{e}^{−\mathrm{i}\theta/\mathrm{3}} \:\mathrm{is}\:\mathrm{unique}\:\Rightarrow\:{h}\in\mathbb{R}\:\mathrm{is}\:\mathrm{unique} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:{h}=\mathrm{8} \\ $$$$\mathrm{not}\:\mathrm{only}\:\mathrm{by}\:\mathrm{squaring}\:\mathrm{we}\:\mathrm{get}\:\mathrm{false}\:\mathrm{solutions}, \\ $$$$\mathrm{but}\:\mathrm{in}\:\mathrm{general}\:\mathrm{by}\:\mathrm{exponentiation} \\ $$
Commented by liberty last updated on 17/Sep/21
do you meant h=−4±(√3)  not a solution sir?
$${do}\:{you}\:{meant}\:{h}=−\mathrm{4}\pm\sqrt{\mathrm{3}} \\ $$$${not}\:{a}\:{solution}\:{sir}? \\ $$
Commented by MJS_new last updated on 17/Sep/21
yes
$$\mathrm{yes} \\ $$
Commented by liberty last updated on 17/Sep/21
why? what wrong
$${why}?\:{what}\:{wrong} \\ $$
Commented by MJS_new last updated on 17/Sep/21
we don′t solve anything when we calculate  a root. (√4)=2. (8)^(1/3) =2. it′s just a calculation.  it′s different if we solve an equation  x^2 =4 ⇒ x=±2  x^3 =8 ⇒ x=2∨x=−1±i(√3)  because here we search for all possible values  of x satisfying x^2 =4 or x^3 =8    h=(√(25))+(√9) is unique: h=8  you would not do this:  h=±5±3 ⇒ h=−8∨h=−2∨h=2∨h=8  now  h=((52−47i))^(1/3) +((52+47i))^(1/3)   abs (52±47i) =17(√(17)) ≈70.0928  arg (52−47i) =−arctan ((47)/(52)) ≈−42.1087°  arg (52+47i) =arctan ((47)/(52)) ≈42.1087°  abs (((52±47i))^(1/3) ) =((abs (52±47i)))^(1/3)  =(√(17))  arg (((52−47i))^(1/3) ) =(1/3)arg (52−47i) =−(1/3)arctan ((47)/(52)) ≈−14.0362°  arg (((52+47i))^(1/3) ) =(1/3)arg (52+47i) =(1/3)arctan ((47)/(52)) ≈14.0362°  ((52−47i))^(1/3) =4−i  ((52+47i))^(1/3) =4+i  h=8
$$\mathrm{we}\:\mathrm{don}'\mathrm{t}\:\mathrm{solve}\:\mathrm{anything}\:\mathrm{when}\:\mathrm{we}\:\mathrm{calculate} \\ $$$$\mathrm{a}\:\mathrm{root}.\:\sqrt{\mathrm{4}}=\mathrm{2}.\:\sqrt[{\mathrm{3}}]{\mathrm{8}}=\mathrm{2}.\:\mathrm{it}'\mathrm{s}\:\mathrm{just}\:\mathrm{a}\:\mathrm{calculation}. \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{different}\:\mathrm{if}\:\mathrm{we}\:\mathrm{solve}\:\mathrm{an}\:\mathrm{equation} \\ $$$${x}^{\mathrm{2}} =\mathrm{4}\:\Rightarrow\:{x}=\pm\mathrm{2} \\ $$$${x}^{\mathrm{3}} =\mathrm{8}\:\Rightarrow\:{x}=\mathrm{2}\vee{x}=−\mathrm{1}\pm\mathrm{i}\sqrt{\mathrm{3}} \\ $$$$\mathrm{because}\:\mathrm{here}\:\mathrm{we}\:\mathrm{search}\:\mathrm{for}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{values} \\ $$$$\mathrm{of}\:{x}\:\mathrm{satisfying}\:{x}^{\mathrm{2}} =\mathrm{4}\:\mathrm{or}\:{x}^{\mathrm{3}} =\mathrm{8} \\ $$$$ \\ $$$${h}=\sqrt{\mathrm{25}}+\sqrt{\mathrm{9}}\:\mathrm{is}\:\mathrm{unique}:\:{h}=\mathrm{8} \\ $$$$\mathrm{you}\:\mathrm{would}\:\mathrm{not}\:\mathrm{do}\:\mathrm{this}: \\ $$$${h}=\pm\mathrm{5}\pm\mathrm{3}\:\Rightarrow\:{h}=−\mathrm{8}\vee{h}=−\mathrm{2}\vee{h}=\mathrm{2}\vee{h}=\mathrm{8} \\ $$$$\mathrm{now} \\ $$$${h}=\sqrt[{\mathrm{3}}]{\mathrm{52}−\mathrm{47i}}+\sqrt[{\mathrm{3}}]{\mathrm{52}+\mathrm{47i}} \\ $$$$\mathrm{abs}\:\left(\mathrm{52}\pm\mathrm{47i}\right)\:=\mathrm{17}\sqrt{\mathrm{17}}\:\approx\mathrm{70}.\mathrm{0928} \\ $$$$\mathrm{arg}\:\left(\mathrm{52}−\mathrm{47i}\right)\:=−\mathrm{arctan}\:\frac{\mathrm{47}}{\mathrm{52}}\:\approx−\mathrm{42}.\mathrm{1087}° \\ $$$$\mathrm{arg}\:\left(\mathrm{52}+\mathrm{47i}\right)\:=\mathrm{arctan}\:\frac{\mathrm{47}}{\mathrm{52}}\:\approx\mathrm{42}.\mathrm{1087}° \\ $$$$\mathrm{abs}\:\left(\sqrt[{\mathrm{3}}]{\mathrm{52}\pm\mathrm{47i}}\right)\:=\sqrt[{\mathrm{3}}]{\mathrm{abs}\:\left(\mathrm{52}\pm\mathrm{47i}\right)}\:=\sqrt{\mathrm{17}} \\ $$$$\mathrm{arg}\:\left(\sqrt[{\mathrm{3}}]{\mathrm{52}−\mathrm{47i}}\right)\:=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arg}\:\left(\mathrm{52}−\mathrm{47i}\right)\:=−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arctan}\:\frac{\mathrm{47}}{\mathrm{52}}\:\approx−\mathrm{14}.\mathrm{0362}° \\ $$$$\mathrm{arg}\:\left(\sqrt[{\mathrm{3}}]{\mathrm{52}+\mathrm{47i}}\right)\:=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arg}\:\left(\mathrm{52}+\mathrm{47i}\right)\:=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arctan}\:\frac{\mathrm{47}}{\mathrm{52}}\:\approx\mathrm{14}.\mathrm{0362}° \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{52}−\mathrm{47i}}=\mathrm{4}−\mathrm{i} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{52}+\mathrm{47i}}=\mathrm{4}+\mathrm{i} \\ $$$${h}=\mathrm{8} \\ $$
Answered by liberty last updated on 16/Sep/21
 h=((52−47i))^(1/3)  +((52+47i))^(1/3)    h^3 −104 = 3h ((52^2 +47^2 ))^(1/3)    h^3 −51h−104=0   (h−8)(h^2 +8h+13)=0    { ((h=8)),((h=−4±(√3) )) :}    { ((h^2 =64)),((h^2 =19±8(√3))) :}
$$\:{h}=\sqrt[{\mathrm{3}}]{\mathrm{52}−\mathrm{47}{i}}\:+\sqrt[{\mathrm{3}}]{\mathrm{52}+\mathrm{47}{i}} \\ $$$$\:{h}^{\mathrm{3}} −\mathrm{104}\:=\:\mathrm{3}{h}\:\sqrt[{\mathrm{3}}]{\mathrm{52}^{\mathrm{2}} +\mathrm{47}^{\mathrm{2}} } \\ $$$$\:{h}^{\mathrm{3}} −\mathrm{51}{h}−\mathrm{104}=\mathrm{0} \\ $$$$\:\left({h}−\mathrm{8}\right)\left({h}^{\mathrm{2}} +\mathrm{8}{h}+\mathrm{13}\right)=\mathrm{0} \\ $$$$\:\begin{cases}{{h}=\mathrm{8}}\\{{h}=−\mathrm{4}\pm\sqrt{\mathrm{3}}\:}\end{cases} \\ $$$$\:\begin{cases}{{h}^{\mathrm{2}} =\mathrm{64}}\\{{h}^{\mathrm{2}} =\mathrm{19}\pm\mathrm{8}\sqrt{\mathrm{3}}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *