Menu Close

H-n-1-1-2-1-3-1-n-H-2n-compute-H-2n-H-n-and-H-n-1-H-n-




Question Number 180828 by Vynho last updated on 17/Nov/22
H_n =1+(1/2)+(1/3)+...+(1/n)  H_(2n) =? compute H_(2n) −H_n  and H_(n+1) −H_n
Hn=1+12+13++1nH2n=?computeH2nHnandHn+1Hn
Commented by Frix last updated on 17/Nov/22
obviously H_(n+1) −H_n =(1/(n+1))  I believe that lim_(n→∞)  (H_(kn) −H_n ) =ln k for k∈N
obviouslyHn+1Hn=1n+1Ibelievethatlimn(HknHn)=lnkforkN
Answered by Frix last updated on 19/Nov/22
H_(2n) −H_n =Σ_(k=1) ^(2n) (1/k)−Σ_(k=1) ^n (1/k)=  =(1/1)+(1/2)+(1/3)+(1/4)+...+(1/(2n))−Σ_(k=1) ^n (1/k)=  =(1/1)+(1/3)+...+(1/(2n−1))+(1/2)+(1/4)+...+(1/(2n))−Σ_(k=1) ^n (1/k)=  =Σ_(k=1) ^n (1/(2k−1))+Σ_(k=1) ^n (1/(2k))−Σ_(k=1) ^n (1/k)=  =Σ_(k=1) ^n (1/(2k−1))+(1/2)Σ_(k=1) ^n (1/k)−Σ_(k=1) ^n (1/k)=  =Σ_(k=1) ^n (1/(2k−1))−(1/2)Σ_(k=1) ^n (1/k)=Σ_(k=1) ^n (1/(2k−1))−(H_n /2)  ⇒  H_(2n) =(H_n /2)+Σ_(k=1) ^n (1/(2k−1))
H2nHn=2nk=11knk=11k==11+12+13+14++12nnk=11k==11+13++12n1+12+14++12nnk=11k==nk=112k1+nk=112knk=11k==nk=112k1+12nk=11knk=11k==nk=112k112nk=11k=nk=112k1Hn2H2n=Hn2+nk=112k1

Leave a Reply

Your email address will not be published. Required fields are marked *