Menu Close

h-x-sin-4-x-cos-4-x-2msinxcosx-Find-all-the-values-of-the-parameter-m-for-the-funtion-denined-on-R-




Question Number 41911 by lucha116 last updated on 15/Aug/18
h(x)=(√(sin^4 x+cos^4 x−2msinxcosx))  Find all the values of the parameter m for the funtion denined on R
h(x)=sin4x+cos4x2msinxcosxFindallthevaluesoftheparametermforthefuntiondeninedonR
Commented by MJS last updated on 15/Aug/18
draw the function for ∣m∣>(1/2), you will see  that it′s not defined ∀x∈R  m=1 ⇒ sin^4  (π/4) +cos^4  (π/4) −2sin (π/4) cos (π/4)=  =(1/4)+(1/4)−2×((√2)/2)×((√2)/2)=−(1/2)  as I hopefully showed the minimum of  sin^4  x +cos^4  x −2msin x cos x must be ≥0  and it′s exactly zero for m=±(1/2). for ∣m∣>(1/2)  the minimum is below zero
drawthefunctionform∣>12,youwillseethatitsnotdefinedxRm=1sin4π4+cos4π42sinπ4cosπ4==14+142×22×22=12asIhopefullyshowedtheminimumofsin4x+cos4x2msinxcosxmustbe0anditsexactlyzeroform=±12.form∣>12theminimumisbelowzero
Commented by math khazana by abdo last updated on 15/Aug/18
we have h(x)=(√((cos^2 x+sin^2 x)^2 −2cos^2 xsin^2 x−2msinxcosx))  =(√(1−(1/2)sin^2 (2x)−msin(2x)))  =(1/( (√2)))(√(2−sin^2 (2x)−2msin(2x))) due to D_f we mist  have −sin^2 (2x)−2msin(2x)+2≥0 ⇒  sin^2 (2x) +2msin(2x)−2≤0 let sin(2x) =t ⇒  t^2 +2mt −2≤0  and   ∣t∣≤1 ⇒  Δ^′  =m^2  +2>0⇒t_1 =−m+(√(m^2 +2))  and   t_2 =−m−(√(m^(2 ) +2))    ∣t_1 ∣ ≤1 ⇒ −1≤−m+(√(m^2  +2))≤1 ⇒  m−1 ≤(√(m^2 +2))≤m+1   if m>1 ⇒  m^2 −2m+1 ≤m^2  +2 ≤m^2  +2m +2 ⇒  −2m+1≤2≤2m+2 ⇒ −m+(1/2)≤ 1≤ m+1 ⇒  −m≤(1/2) and m≥0 ⇒m≥0⇒ m≥1  if −1<m<1 ⇒−(1−m)≤(√(m^2 +2))≤m+1 ⇒  m^2 −2m +1 ≤m^2 +2 ≤m^2 +2m+1 ⇒  −m≤(1/2)and m≥0 ⇒m≥0 ⇒ 0≤m≤1  ∣t_2 ∣≤1 ⇒ ∣−m−(√(m^2  +2))∣≤1 ⇒  −1≤m+(√(m^2  +2))≤1 ⇒−m−1≤(√(m^2  +2))≤1−m so  m≤1  if −m−1>0 ⇒m≤−1 ⇒  m^2 +2m+1≤m^2 +2≤m^2 −2m +1 ⇒  2m+1≤2≤−2m+1 ⇒ 2m≤1≤−2m ⇒  m≤(1/2) and (1/2)≤−m ⇒m≤(1/2) and m≤−(1/2) ⇒  m≤−(1/2) ⇒m ≤−1 due to initial condition  if −m−1≤0 ⇒−1≤m≤1  so  ∣t_2 ∣ ≤1 ⇒ −1≤m≤1 finally  ∣t_1 ∣≤1 and ∣t_2 ∣≤1 ⇒   0≤m≤1 .
wehaveh(x)=(cos2x+sin2x)22cos2xsin2x2msinxcosx=112sin2(2x)msin(2x)=122sin2(2x)2msin(2x)duetoDfwemisthavesin2(2x)2msin(2x)+20sin2(2x)+2msin(2x)20letsin(2x)=tt2+2mt20andt∣⩽1Δ=m2+2>0t1=m+m2+2andt2=mm2+2t111m+m2+21m1m2+2m+1ifm>1m22m+1m2+2m2+2m+22m+122m+2m+121m+1m12andm0m0m1if1<m<1(1m)m2+2m+1m22m+1m2+2m2+2m+1m12andm0m00m1t2∣⩽1mm2+2∣⩽11m+m2+21m1m2+21msom1ifm1>0m1m2+2m+1m2+2m22m+12m+122m+12m12mm12and12mm12andm12m12m1duetoinitialconditionifm101m1sot211m1finallyt1∣⩽1andt2∣⩽10m1.
Commented by math khazana by abdo last updated on 15/Aug/18
another way but easy  we have ∣t_1 ∣≤1 and  ∣t_2 ∣≤1 ⇒ −1 ≤−m+(√(m^2  +2))≤1 and  −1≤−m−(√(m^2  +2))≤1 ⇒  −2≤−2m ≤2 ⇒ −1≤−m≤1 ⇒ −1≤m≤1
anotherwaybuteasywehavet1∣⩽1andt2∣⩽11m+m2+21and1mm2+2122m21m11m1
Commented by math khazana by abdo last updated on 15/Aug/18
−1≤m≤1
1m1
Commented by maxmathsup by imad last updated on 15/Aug/18
for m=1  h(x)=(√(sin^4 x+cos^4 x−2sinxcosx))  =(√((sin^2 x +cos^2 x)^2 −2sin^2 xcos^2 x−sin(2x)))  =(√(1−(1/2)sin^2 (2x)−sin(2x)))=(1/( (√2)))(√(2−sin^2 (2x)−2sin(2x)))  =(1/( (√2)))(√(−sin^2 (2x)−2sin(2x)+2))  let t=sin(2x)  Δ^′  =1 +2 =3 ⇒ t_1 =((1+(√3))/(−1))  and t_2 =((1−(√3))/(−1)) ⇒t_1 =−(√3)−1   and  t_2 =−1−(√3)    so ∣t_1 ∣<1  but ∣t_2 ∣ >1  any way we can take −(1/2)≤m≤(1/2)  thank you sir for this remark...
form=1h(x)=sin4x+cos4x2sinxcosx=(sin2x+cos2x)22sin2xcos2xsin(2x)=112sin2(2x)sin(2x)=122sin2(2x)2sin(2x)=12sin2(2x)2sin(2x)+2lett=sin(2x)Δ=1+2=3t1=1+31andt2=131t1=31andt2=13sot1∣<1butt2>1anywaywecantake12m12thankyousirforthisremark
Answered by MJS last updated on 15/Aug/18
sin^4  x +cos^4  x −2msin x cos x ≥0  ...after some trigonometric transformations:  (1/4)cos 4x −msin 2x +(3/4)≥0  (d/dx)[(1/4)cos 4x −msin 2x +(3/4)]=0  −sin 4x −2mcos 2x=0  x=arctan t  ((2mt^4 +4t^3 −4t^2 −2m)/((t^2 +1)^2 ))=0  t^4 +((2t^3 )/m)−((2t)/m)−1=0  t=±1 ∨ t=−(1/m)±((√(1−m^2 ))/m) ⇒ −1≤m≤1  ⇒ x=±(π/4) ∨ x=arctan (−(1/m)±((√(1−m^2 ))/m))  (1/4)cos 4x −msin 2x +(3/4)≥0  x_1 =−(π/4) ⇒ m+(1/2)≥0 ⇒ m≥−(1/2)  x_2 =(π/4) ⇒ −m+(1/2)≥0 ⇒ m≤(1/2)  x_(3, 4) =arctan (−(1/m)±((√(1−m^2 ))/m)) ⇒ (m^2 /2)+1≥0 ⇒ m∈R  answer is −(1/2)≤m≤(1/2)
sin4x+cos4x2msinxcosx0aftersometrigonometrictransformations:14cos4xmsin2x+340ddx[14cos4xmsin2x+34]=0sin4x2mcos2x=0x=arctant2mt4+4t34t22m(t2+1)2=0t4+2t3m2tm1=0t=±1t=1m±1m2m1m1x=±π4x=arctan(1m±1m2m)14cos4xmsin2x+340x1=π4m+120m12x2=π4m+120m12x3,4=arctan(1m±1m2m)m22+10mRansweris12m12
Commented by lucha116 last updated on 15/Aug/18
it is true but i have studied grade 11 and i have not learnt (d/dx). Can you solve by other way?
itistruebutihavestudiedgrade11andihavenotlearntddx.Canyousolvebyotherway?
Commented by maxmathsup by imad last updated on 15/Aug/18
this question is more difficult for grade 11 and generally the consept of   trigonometry is more difficult  ...
thisquestionismoredifficultforgrade11andgenerallytheconseptoftrigonometryismoredifficult
Commented by lucha116 last updated on 15/Aug/18
yes. i know. thks ^� 0 ^�
yes.iknow.thks^0^
Answered by MJS last updated on 15/Aug/18
hopefully an easier explanation  sin^2  x =(1/2)(1−cos 2x)  cos^2  x =(1/2)(1+cos 2x)  sin^4  x =((1/2)(1−cos 2x))^2 =  =(1/4)(1−2cos 2x +cos^2  2x)=  =(1/4)(1−2cos 2x +(1/2)(1+cos 4x))=  =(3/8)+(1/8)cos 4x −(1/2)cos 2x  similar cos^4  x =(3/8)+(1/8)cos 4x +(1/2)cos 2x  ⇒ sin^4  x +cos^4  x =(3/4)+(1/4)cos 4x  this has a period of (π/2) with min= ((((π/4)+(π/2)z)),((1/2)) ) ; z∈Z  −2msin x cos x =−msin 2x  this has a period of π with min= ((( (π/4)+πz)),((−m)) ) ; z∈Z    the sum of both gives  (((π/4)),(((1/2)−m)) ) within the  first period. we know that (1/2)−m≥0 ⇒ m≤(1/2)  if m<0 the min of −msin 2x changes to the  2^(nd)  half of its period because the curve now  is upside down: min= (((((3π)/4)+πz)),(m) )  so the sum now is  ((((3π)/4)),(((1/2)+m)) )  ⇒ m≥−(1/2)
hopefullyaneasierexplanationsin2x=12(1cos2x)cos2x=12(1+cos2x)sin4x=(12(1cos2x))2==14(12cos2x+cos22x)==14(12cos2x+12(1+cos4x))==38+18cos4x12cos2xsimilarcos4x=38+18cos4x+12cos2xsin4x+cos4x=34+14cos4xthishasaperiodofπ2withmin=(π4+π2z12);zZ2msinxcosx=msin2xthishasaperiodofπwithmin=(π4+πzm);zZthesumofbothgives(π412m)withinthefirstperiod.weknowthat12m0m12ifm<0theminofmsin2xchangestothe2ndhalfofitsperiodbecausethecurvenowisupsidedown:min=(3π4+πzm)sothesumnowis(3π412+m)m12

Leave a Reply

Your email address will not be published. Required fields are marked *