Question Number 80180 by mathocean1 last updated on 31/Jan/20
$$\mathrm{h}\left({x}\right)=\frac{{x}−{x}^{\mathrm{2}} }{{x}+\mathrm{1}} \\ $$$${we}\:{defined}\:{this}\:{function}\:{on} \\ $$$$\mathbb{R}−\left\{−\mathrm{1}\right\}\rightarrow\mathbb{R} \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Study}\:\mathrm{the}\:\mathrm{variations}\:\mathrm{of}\:\mathrm{h}\:\mathrm{then} \\ $$$$\mathrm{draw}\:\mathrm{up}\:\mathrm{its}\:\mathrm{table}\:\mathrm{of}\:\mathrm{variation}. \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{sirs}\:\mathrm{i}\:\mathrm{need}\:\mathrm{your}\:\mathrm{kind}\:\mathrm{help} \\ $$
Answered by Rio Michael last updated on 31/Jan/20
$$\:\boldsymbol{\mathrm{solution}} \\ $$$$\:−−−−−−−−−− \\ $$$$\mathrm{h}\left({x}\right)\:=\:\frac{{x}−{x}^{\mathrm{2}} }{{x}−\mathrm{1}} \\ $$$${h}\left({x}\right)\:=\:\mathrm{0}\:\Rightarrow\:{x}\:−{x}^{\mathrm{2}} \:=\:\mathrm{0}\:\Rightarrow\:{x}\:=\mathrm{0}\:{or}\:{x}\:=\:\mathrm{1} \\ $$$$\:\mathrm{h}'\left({x}\right)\:=\:\frac{\left({x}−{x}^{\mathrm{2}} \right)−\left({x}−\mathrm{1}\right)\left(\mathrm{1}−\mathrm{2}{x}\right)}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:=\:\frac{{x}\:−{x}^{\mathrm{2}} \:−\left({x}−\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}+\mathrm{2}{x}\right)}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\:{h}^{'} \left({x}\right)\:=\:\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}\:+\:\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$$$\:{h}^{'} \left({x}\right)\:>\:\mathrm{0}\:\Rightarrow\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} \:>\:\mathrm{0}\:\:\Rightarrow\:{x}\:>\:\mathrm{1} \\ $$$$\:{h}\:{is}\:{increasing}\:{for}\:{x}\:>\:\mathrm{1}\:{and}\:{decreasing}\:{other}\:{wise} \\ $$$$ \\ $$
Commented by mathocean1 last updated on 31/Jan/20
$$\mathrm{Please}\:\mathrm{sir}\:\mathrm{h}'\:\mathrm{is}\:\mathrm{not}\:\mathrm{like}\:\mathrm{this}: \\ $$$$\mathrm{h}'=\frac{\left(\mathrm{1}−\mathrm{2}{x}\right)\left({x}+\mathrm{1}\right)−\left({x}−{x}^{\mathrm{2}} \right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:\:?\:\: \\ $$$$\: \\ $$
Commented by mathocean1 last updated on 31/Jan/20
$$\mathrm{h}\left({x}\right)=\frac{{x}−{x}^{\mathrm{2}} }{{x}+\mathrm{1}} \\ $$
Commented by Rio Michael last updated on 31/Jan/20
$${sorry}\:{i}\:{copied}\:{the}\:{question}\:{wrongly} \\ $$
Commented by mathocean1 last updated on 31/Jan/20
$$\mathrm{please}\:\mathrm{sir}\:\mathrm{how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{draw}\:\mathrm{up}\:\mathrm{its}\: \\ $$$$\mathrm{table}\:\mathrm{of}\:\mathrm{variation}\:\mathrm{when}\: \\ $$$$\mathrm{h}'=\frac{−{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }=−\mathrm{1}\:? \\ $$
Commented by JDamian last updated on 01/Feb/20
$${if}\:\:\mathrm{h}\left({x}\right)\:{were}\:\frac{{x}−{x}^{\mathrm{2}} }{{x}−\mathrm{1}},\:{then}\:\mathrm{h}\left({x}\right)=\frac{{x}\left(\mathrm{1}−{x}\right)}{{x}−\mathrm{1}}=−{x} \\ $$$${a}\:{very}\:{easy}\:{function} \\ $$
Commented by mathocean1 last updated on 01/Feb/20
$$\mathrm{so}…\:\mathrm{we}\:\mathrm{can}\:\mathrm{study}\:\mathrm{h}\left({x}\right)=\frac{{x}−{x}^{\mathrm{2}} }{{x}+\mathrm{1}}??? \\ $$