Menu Close

happy-new-year-a-b-c-Z-0-p-x-ax-2-bx-c-p-a-0-p-b-0-p-1-




Question Number 162787 by amin96 last updated on 01/Jan/22
happy new year  {a;b;c}∈Z−{0}  p(x)=ax^2 +bx+c      p(a)=0  p(b)=0  p(1)=?
happynewyear{a;b;c}Z{0}p(x)=ax2+bx+cp(a)=0p(b)=0p(1)=?
Answered by alephzero last updated on 01/Jan/22
p(a) = aa^2  + ba + c = a^3  + ba + c = 0  p(b) = ab^2  + bb + c = ab^2  + b^2  + c = 0  p(1) = a^2  + b + c = ?   { ((a^3 + ba + c = 0)),((ab^2  + b^2  + c =0)) :}  ⇒ { ((a^3  + ba = −c)),((ab^2  + b^2  = −c)) :}   ⇒ a^3  + ba = ab^2  + b^2   ⇒ a(a^2  + b) = b^2 (a + 1)  (a_1 ; b_1 ) = (−(1/2); −(1/2))  (a_2 ; b_2 ) = (−2; 4)  (a_3 ; b_3 ) = (0; 0)  But {a; b; c} ∈ Z−{0}  ⇒ (a; b) = (−2; 4)  ⇒ { ((−2^3  + (−2) × 4 = −c)),((−2 × 4^2  + 4^2  = −c)) :}   { ((−8 + (−8) = −c)),((−36 + 16 = −c)) :}  ⇒ −16 = −c  ⇒ c = 16  a^2  + b + c = (−2)^2  + 4 + 16 = 4 + 4 +  + 16 = 8 + 16 = 24  p(1) = 24
p(a)=aa2+ba+c=a3+ba+c=0p(b)=ab2+bb+c=ab2+b2+c=0p(1)=a2+b+c=?{a3+ba+c=0ab2+b2+c=0{a3+ba=cab2+b2=ca3+ba=ab2+b2a(a2+b)=b2(a+1)(a1;b1)=(12;12)(a2;b2)=(2;4)(a3;b3)=(0;0)But{a;b;c}Z{0}(a;b)=(2;4){23+(2)×4=c2×42+42=c{8+(8)=c36+16=c16=cc=16a2+b+c=(2)2+4+16=4+4++16=8+16=24p(1)=24
Commented by mr W last updated on 01/Jan/22
solution is not unique.  f(x)=x^2 +x−2 is also ok.  f(1)=0.  in fact any a=b=n, c=−n^2 (n+1) with  n∈Z is ok.
solutionisnotunique.f(x)=x2+x2isalsook.f(1)=0.infactanya=b=n,c=n2(n+1)withnZisok.

Leave a Reply

Your email address will not be published. Required fields are marked *