Menu Close

hello-every-one-prove-that-0-pi-2-cos-u-x-cos-ax-arctan-b-cos-x-dx-2-u-2-pi-b-u-2-u-a-3-2-u-a-3-2-x-4-F-3-1-2-1-u-2-u-3-2-b-2-3-2-u-a-3-2-




Question Number 100829 by  M±th+et+s last updated on 28/Jun/20
hello every one     prove that  ∫_0 ^(π/2) cos^u (x) cos(ax) arctan(b cos(x)) dx  =((2^(−u−2) .π.b.Γ(u+2))/(Γ(((u−a+3)/2))Γ(((u+a+3)/2)))).x_4 F_3  ((((1/2),1+(u/2),((u+3)/2),−b^2 )),(((3/2),((u−a+3)/2),((u+a+3)/2))) )      Re u>−1 ,∣arg(1+b^2 ) ∣<π
$${hello}\:{every}\:{one}\: \\ $$$$ \\ $$$${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{{u}} \left({x}\right)\:{cos}\left({ax}\right)\:{arctan}\left({b}\:{cos}\left({x}\right)\right)\:{dx} \\ $$$$=\frac{\mathrm{2}^{−{u}−\mathrm{2}} .\pi.{b}.\Gamma\left({u}+\mathrm{2}\right)}{\Gamma\left(\frac{{u}−{a}+\mathrm{3}}{\mathrm{2}}\right)\Gamma\left(\frac{{u}+{a}+\mathrm{3}}{\mathrm{2}}\right)}.{x}_{\mathrm{4}} {F}_{\mathrm{3}} \begin{pmatrix}{\frac{\mathrm{1}}{\mathrm{2}},\mathrm{1}+\frac{{u}}{\mathrm{2}},\frac{{u}+\mathrm{3}}{\mathrm{2}},−{b}^{\mathrm{2}} }\\{\frac{\mathrm{3}}{\mathrm{2}},\frac{{u}−{a}+\mathrm{3}}{\mathrm{2}},\frac{{u}+{a}+\mathrm{3}}{\mathrm{2}}}\end{pmatrix} \\ $$$$ \\ $$$$ \\ $$$${Re}\:{u}>−\mathrm{1}\:,\mid{arg}\left(\mathrm{1}+{b}^{\mathrm{2}} \right)\:\mid<\pi \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *