Menu Close

hello-floor-function-a-b-x-dx-a-b-z-and-b-gt-a-0-b-x-dx-0-a-x-dx-b-2-b-2-a-2-a-2-1-now-m-k-x-dx-when-m-k-z-when-m-lt-a-lt-b-lt-k-b-k-and-a




Question Number 88955 by M±th+et£s last updated on 14/Apr/20
hello   floor function  ∫_a ^b ⌊x⌋  dx          a,b∈z   and b>a  =∫_0 ^b ⌊x⌋ dx −∫_0 ^a ⌊x⌋ dx =((b^2 −b)/2)−((a^2 −a)/2) ....(1)  now  ∫_m ^k ⌊x⌋ dx   when m,k∉z    when m<a<b<k  b=[k]    and a=[m]  ∫_m ^a ⌊x⌋dx +∫_a ^b ⌊x⌋dx +∫_b ^k ⌊x⌋dx  =(a−m)⌊m⌋+((b^2 −b)/2)−((a^2 −a)/2)+(k−b)⌊k⌋  =(⌊m⌋−m)⌊m⌋+((⌊k⌋^2 −⌊k⌋)/2)−((⌊m⌋^2 −⌊m⌋)/2)+(k−⌊k⌋)⌊k⌋  ⌊m⌋^2 −m⌊m⌋ +(1/2)⌊k⌋^2 −(1/2)⌊k⌋−(1/2)⌊m⌋^2 −(1/2)⌊m⌋+k⌊k⌋−⌊k⌋^2   =k⌊k⌋−m⌊m⌋+(1/2)⌊m⌋^2 −(1/2)⌊k⌋^2 +(1/2)⌊m⌋−(1/2)⌊k⌋  ∴∫_m ^k ⌊x⌋dx=k⌊k⌋−m⌊m⌋+(1/2)(⌊m⌋−⌊k⌋)(⌊m⌋+⌊k⌋)+1  example  ∫_(−1.5) ^(3.7) ⌊x⌋dx=(3.7)3−((−1.5)(−2))+(1/2)(−2−3)(−2+3+1)  =11.1−3−5=3.1
hellofloorfunctionabxdxa,bzandb>a=0bxdx0axdx=b2b2a2a2.(1)nowmkxdxwhenm,kzwhenm<a<b<kb=[k]anda=[m]maxdx+abxdx+bkxdx=(am)m+b2b2a2a2+(kb)k=(mm)m+k2k2m2m2+(kk)km2mm+12k212k12m212m+kkk2=kkmm+12m212k2+12m12kmkxdx=kkmm+12(mk)(m+k)+1example1.53.7xdx=(3.7)3((1.5)(2))+12(23)(2+3+1)=11.135=3.1
Commented by M±th+et£s last updated on 14/Apr/20
nice work sir
niceworksir
Commented by mathmax by abdo last updated on 14/Apr/20
let A =∫_n ^m [x]dx  with m≥n ⇒∃q∈N /m=n+q ⇒  A =∫_n ^(n+q) [x]dx =_(x=n+t)   ∫_0 ^q [n+t]dt =∫_0 ^q ndt +∫_0 ^q  [t]dt  =nq +Σ_(p=0) ^(q−1)  ∫_p ^(p+1) p dt =nq +Σ_(p=0) ^(q−1) p  =nq +(((q−1)q)/2)  but q =m−n ⇒ A =n(m−n)+(((m−n−1)(m−n))/2) ⇒  A =((2n(m−n))/2) +((m−n)/2)(m−n−1)  =((m−n)/2){ 2n+m−n−1} =((m−n)/2)(n+m−1)  example  ∫_2 ^7 [x]dx =((7−2)/2)(2+7−1) =(5/2)×8 =20 let verify  ∫_2 ^7 [x]dx =∫_2 ^3 [x]dx +∫_3 ^4 [x]dx +∫_4 ^5 [x]dx +∫_5 ^6 [x]dx +∫_6 ^7 [x]dx  =2+3 +4 +5 +6 =20  (the relation is correct)  ∫_(−2) ^5 [x]dx =((5+2)/2)(−2+5−1) =(7/2)×2 =7 let verify  ∫_(−2) ^5 [x]dx =∫_(−2) ^(−1) [x]dx +∫_(−1) ^0 [x]dx +∫_0 ^1 [x]dx +∫_1 ^2 [x]dx +∫_2 ^3 [x]dx  +∫_3 ^4  x]dx +∫_4 ^5 [x]dx =−2 +(−1)+0 +1 +2+3+4  =−3+3+3+4=7 (correct!)
letA=nm[x]dxwithmnqN/m=n+qA=nn+q[x]dx=x=n+t0q[n+t]dt=0qndt+0q[t]dt=nq+p=0q1pp+1pdt=nq+p=0q1p=nq+(q1)q2butq=mnA=n(mn)+(mn1)(mn)2A=2n(mn)2+mn2(mn1)=mn2{2n+mn1}=mn2(n+m1)example27[x]dx=722(2+71)=52×8=20letverify27[x]dx=23[x]dx+34[x]dx+45[x]dx+56[x]dx+67[x]dx=2+3+4+5+6=20(therelationiscorrect)25[x]dx=5+22(2+51)=72×2=7letverify25[x]dx=21[x]dx+10[x]dx+01[x]dx+12[x]dx+23[x]dx+34x]dx+45[x]dx=2+(1)+0+1+2+3+4=3+3+3+4=7(correct!)
Commented by mr W last updated on 14/Apr/20
please check what you get:  ∫_(−2) ^4 ⌊x⌋dx=?  you get 7, but it should be 3.
pleasecheckwhatyouget:24xdx=?youget7,butitshouldbe3.
Commented by M±th+et£s last updated on 14/Apr/20
where you see a mistake in the solution
whereyouseeamistakeinthesolution
Commented by M±th+et£s last updated on 14/Apr/20
if a,b∈z  ((b^2 −b)/2)−((a^2 −a)/2)=((16−4)/2)−((4+2)/2)=6−3=3??  its right
ifa,bzb2b2a2a2=16424+22=63=3??itsright
Commented by mr W last updated on 14/Apr/20
with k=4, m=−2 you get from  ∫_m ^k ⌊x⌋dx=k⌊k⌋−m⌊m⌋+(1/2)(⌊m⌋−⌊k⌋)(⌊m⌋+⌊k⌋)+1  the result 7.
withk=4,m=2yougetfrommkxdx=kkmm+12(mk)(m+k)+1theresult7.
Commented by M±th+et£s last updated on 14/Apr/20
this is for a,b∉z
thisisfora,bz
Commented by mr W last updated on 14/Apr/20
i see. but we should find a formula  for any values of a and b. my formula  works for any values of a and b.
isee.butweshouldfindaformulaforanyvaluesofaandb.myformulaworksforanyvaluesofaandb.
Commented by M±th+et£s last updated on 14/Apr/20
you are right sir thank you
youarerightsirthankyou
Commented by mathmax by abdo last updated on 15/Apr/20
thankx
thankx

Leave a Reply

Your email address will not be published. Required fields are marked *