Menu Close

Hello-Nice-day-im-thinking-of-this-one-a-close-forme-1-x-p-dx-p-R-x-0-1-




Question Number 81400 by mind is power last updated on 12/Feb/20
Hello  Nice day im thinking of this one  a close forme?  ∫(√(1+x^p ))dx  p∈R_+ ,  x∈[0,1[
HelloNicedayimthinkingofthisoneacloseforme?1+xpdxpR+,x[0,1[
Commented by abdomathmax last updated on 13/Feb/20
at form of serie we have   (1+u)^α =1+(α/(1!))u +((α(α−1))/(2!))u^2 +...  =1+Σ_(n=1) ^∞  ((α(α−1)...(α−n+1))/(n!)) u^n  ⇒  (√(1+u))=1+Σ_(n=1) ^∞ (((1/2)((1/2)−1)....((1/2)−n+1))/(n!))u^n  ⇒  (√(1+x^p ))=1+Σ_(n=1) ^∞  (((1/2)((1/2)−1)...((1/2)−n+1))/(n!))x^(pn)  ⇒  ∫(√(1+x^p ))dx=  1+Σ_(n=1) ^∞  (((1/2)((1/2)−1)...((1/2)−n+1))/(n!))×(1/(pn+1))x^(pn+1)  +C
atformofseriewehave(1+u)α=1+α1!u+α(α1)2!u2+=1+n=1α(α1)(αn+1)n!un1+u=1+n=112(121).(12n+1)n!un1+xp=1+n=112(121)(12n+1)n!xpn1+xpdx=1+n=112(121)(12n+1)n!×1pn+1xpn+1+C
Commented by mind is power last updated on 14/Feb/20
=x_2 F_1 (−(1/2),(1/p);(1/p)+1;x^p )+c
=x2F1(12,1p;1p+1;xp)+c
Commented by mind is power last updated on 14/Feb/20
nice Sir
niceSir
Answered by behi83417@gmail.com last updated on 12/Feb/20
x^p =tg^2 t⇒px^(p−1) dx=2tgt(1+tg^2 t)dt  ⇒dx=(2/p)tg^(((2/p)−1)) t(1+tg^2 t)dt  ⇒I=(2/p)∫tg^(((2/p)−1)) t.(1/(cos^3 t))dt=  =^(m=((2/p)−1)) (m+1)∫((tg^m t)/(cos^3 t))dt=  =(m+1)∫sin^m t.cos^(−(m+3)) tdt=...
xp=tg2tpxp1dx=2tgt(1+tg2t)dtdx=2ptg(2p1)t(1+tg2t)dtI=2ptg(2p1)t.1cos3tdt==m=(2p1)(m+1)tgmtcos3tdt==(m+1)sinmt.cos(m+3)tdt=
Commented by mind is power last updated on 12/Feb/20
nice sir     Try too use  Hypergeometric Function   i think a close forme by this one may bee
nicesirTrytoouseHypergeometricFunctionithinkacloseformebythisonemaybee

Leave a Reply

Your email address will not be published. Required fields are marked *