Menu Close

hello-please-dx-a-2-cos-2-x-b-2-sin-2-x-




Question Number 130088 by stelor last updated on 22/Jan/21
hello please.    ∫(dx/(a^2 cos^2 x + b^2 sin^2 x))
helloplease.dxa2cos2x+b2sin2x
Answered by bobhans last updated on 22/Jan/21
I=∫ ((dx/(cos^2 x))/(a^2 +b^2 tan^2 x)) = ∫ ((sec^2 x dx)/(a^2 +b^2  tan^2 x))   let tan x = u ⇒du = sec^2 x dx  I=∫ (du/(a^2 +b^2 u^2 ))  ; let bu = a tan θ  I=∫ (((a/b)sec^2 θ dθ)/(a^2 sec^2 θ)) = (1/(ab)) θ + c  I=(1/(ab)) tan^(−1) (((bu)/a))+c = (1/(ab))tan^(−1) (((b tan x)/a))+c
I=dxcos2xa2+b2tan2x=sec2xdxa2+b2tan2xlettanx=udu=sec2xdxI=dua2+b2u2;letbu=atanθI=absec2θdθa2sec2θ=1abθ+cI=1abtan1(bua)+c=1abtan1(btanxa)+c
Commented by stelor last updated on 22/Jan/21
thank...
thank
Answered by mathmax by abdo last updated on 22/Jan/21
I =∫  (dx/(a^2 (cos^2 x+(b^2 /a^2 )sin^2 x))) let α =(b^2 /a^2 )  (ab≠0and a≠b)) ⇒I=(1/a^2 )∫(dx/(cos^2 x+α^2  cos^2 x))  =(1/a^2 )∫  (dx/(((1+cos(2x))/2)+α^2 ×((1−cos(2x))/2))) =(2/a^2 )∫ (dx/(1+cos(2x)+α^2 −α^2 cos(2x)))  =(2/a^2 )∫ (dx/(1+α^2  +(1−α^2  )cos(2x))) =_(2x=t)    (1/a^2 )∫ (dt/((1+α^2  +(1−α^2 )cost)))  =_(tan((t/2))=z)     (1/a^2 )∫  ((2dz)/((1+z^2 ){1+α^2  +(1−α^2 )((1−z^2 )/(1+z^2 ))}))  =(2/a^2 )∫   (dz/((1+α^2 )(1+z^2 )+(1−α^2 )(1−z^2 )))  =(2/a^2 )∫ (dz/(1+α^2  +(1+α^2 )z^2  +1−α^2 −(1−α^2 )z^2 ))  =(2/a^2 )∫ (dz/(2+(2α^2 )z^2 )) =(1/a^2 )∫  (dz/(1+α^2 z^2 )) =(1/(αa^2 )) arctan(αz) +c  =(1/(αa^2 ))arctan(αtan((t/2)))+C  =(a^2 /(b^2 a^2 ))arctan((b^2 /a^2 )tan(x))+C  =(1/b^2 )arctan((b^2 /a^2 )tan(x)) +C
I=dxa2(cos2x+b2a2sin2x)letα=b2a2(ab0andab))I=1a2dxcos2x+α2cos2x=1a2dx1+cos(2x)2+α2×1cos(2x)2=2a2dx1+cos(2x)+α2α2cos(2x)=2a2dx1+α2+(1α2)cos(2x)=2x=t1a2dt(1+α2+(1α2)cost)=tan(t2)=z1a22dz(1+z2){1+α2+(1α2)1z21+z2}=2a2dz(1+α2)(1+z2)+(1α2)(1z2)=2a2dz1+α2+(1+α2)z2+1α2(1α2)z2=2a2dz2+(2α2)z2=1a2dz1+α2z2=1αa2arctan(αz)+c=1αa2arctan(αtan(t2))+C=a2b2a2arctan(b2a2tan(x))+C=1b2arctan(b2a2tan(x))+C
Commented by mathmax by abdo last updated on 22/Jan/21
sorry α=(b/a) ⇒I =(a/(ba^2 )) arctan((b/a)tan(x)) +C  =(1/(ab))arctan((b/a)tanx)+C
sorryα=baI=aba2arctan(batan(x))+C=1abarctan(batanx)+C

Leave a Reply

Your email address will not be published. Required fields are marked *