Menu Close

hello-please-give-me-the-limited-development-of-f-in-0-at-3-rd-order-f-x-ln-sin-x-




Question Number 130303 by stelor last updated on 24/Jan/21
hello... please give me the limited development of...f... in 0 at 3^(rd)  order.      f(x)=ln(sin(x))
hellopleasegivemethelimiteddevelopmentoffin0at3rdorder.f(x)=ln(sin(x))
Commented by stelor last updated on 24/Jan/21
developpement limite en (Π/2) a l′ordre 3.
developpementlimiteenΠ2alordre3.
Answered by mathmax by abdo last updated on 24/Jan/21
f(x)=f((π/2)) +((x−(π/2))/(1!))f^′ ((π/2))+(((x−(π/2))^2 )/(2!))f^((2)) ((π/2)) +(((x−(π/2))^3 )/(3!))f^((3)) (0) +(x−(π/2))^3 ξ(x−(π/2))  f((π/2))=0  ,f^′ (x)=((cosx)/(sinx)) ⇒f^′ ((π/2))=0,f^((2)) (x)=((−sin^2 x−cos^2 x)/(sin^2 x))  =−(1/(sin^2 x)) ⇒f^((2)) ((π/2))=−1  f^((3)) (x)=((2sinx cosx)/(sin^4 x))=((2cosx)/(sin^3 x)) ⇒f^((3)) ((π/2))=0 ⇒  ln(sinx)=−(((x−(π/2))^2 )/2) +o{(x−(π/2))^3 }
f(x)=f(π2)+xπ21!f(π2)+(xπ2)22!f(2)(π2)+(xπ2)33!f(3)(0)+(xπ2)3ξ(xπ2)f(π2)=0,f(x)=cosxsinxf(π2)=0,f(2)(x)=sin2xcos2xsin2x=1sin2xf(2)(π2)=1f(3)(x)=2sinxcosxsin4x=2cosxsin3xf(3)(π2)=0ln(sinx)=(xπ2)22+o{(xπ2)3}
Commented by mathmax by abdo last updated on 24/Jan/21
first line f^((3)) ((π/2))
firstlinef(3)(π2)
Commented by stelor last updated on 25/Jan/21
merci........(√(√(thank)))
merci..thank

Leave a Reply

Your email address will not be published. Required fields are marked *