Question Number 82867 by mind is power last updated on 24/Feb/20
$${hello}\:{prove}\:{that}\:\int_{\mathrm{0}} ^{+\infty} {sin}\left({x}^{\mathrm{4}} \right){dx}={sin}\left(\frac{\pi}{\mathrm{8}}\right)\int_{\mathrm{0}} ^{+\infty} {e}^{−{x}^{\mathrm{4}} } {dx}? \\ $$$${verry}\:{nice}\:{day}\:{Good}\:{Bless}\:{You} \\ $$
Commented by abdomathmax last updated on 25/Feb/20
$$\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{4}} \right){dx}\:={Im}\left(\int_{\mathrm{0}} ^{\infty} {e}^{{ix}^{\mathrm{4}} } {dx}\right)\:{but}\:\:{chsngement} \\ $$$${ix}^{\mathrm{4}} =−{t}^{\mathrm{4}} \:{give}\:{x}^{\mathrm{4}} ={it}^{\mathrm{4}} \:\Rightarrow{x}\:={i}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{t}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{e}^{{ix}^{\mathrm{4}} } {dx}\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{t}^{\mathrm{4}} } {i}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{dt}\:=\left({e}^{\frac{{i}\pi}{\mathrm{2}}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} \:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}^{\mathrm{4}} } {dt} \\ $$$$={e}^{\frac{{i}\pi}{\mathrm{8}}} \:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}^{\mathrm{4}} } {dt}\:\:=\left({cos}\left(\frac{\pi}{\mathrm{8}}\right)+{isin}\left(\frac{\pi}{\mathrm{8}}\right)\right)\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}^{\mathrm{4}} } {dt}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{4}} \right){dx}\:={sin}\left(\frac{\pi}{\mathrm{8}}\right)\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}^{\mathrm{4}} } {dt}\: \\ $$$${also}\:{chang}.{t}^{\mathrm{4}} ={u}\:{give}\:{t}\:={u}^{\frac{\mathrm{1}}{\mathrm{4}}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}^{\mathrm{4}} } {dt}\:=\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{u}} \frac{\mathrm{1}}{\mathrm{4}}{u}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} {du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\Rightarrow\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{4}} \right){dx}\:=\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\frac{\pi}{\mathrm{8}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$=\frac{\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}}{\mathrm{8}}×\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$
Commented by mind is power last updated on 25/Feb/20
$${nice}\:{solution}\:{Sir}\:{thank}\:{you} \\ $$
Commented by msup trace by abdo last updated on 25/Feb/20
$${you}\:{are}\:{welcome} \\ $$