Menu Close

Help-me-0-0-3cos-sin-d-d-




Question Number 179344 by neinhaltsieger369 last updated on 28/Oct/22
    Help-me!      ∫_0 ^( 𝛑) ∫_0 ^( 3cos 𝛗) 𝛉sin 𝛗d𝛉d𝛗
$$\: \\ $$$$\:\mathrm{Help}-\mathrm{me}! \\ $$$$\: \\ $$$$\:\int_{\mathrm{0}} ^{\:\boldsymbol{\pi}} \int_{\mathrm{0}} ^{\:\mathrm{3}\boldsymbol{\mathrm{cos}}\:\boldsymbol{\phi}} \boldsymbol{\theta\mathrm{sin}}\:\boldsymbol{\phi\mathrm{d}\theta\mathrm{d}\phi} \\ $$$$\: \\ $$
Commented by CElcedricjunior last updated on 29/Oct/22
k=∫_0 ^𝛑 ∫_0 ^(3cosβˆ…) 𝛉sinβˆ…d𝛉dβˆ…  k=∫_0 ^𝛑 sinβˆ…[(1/2)𝛉^2 ]_0 ^(3sinβˆ…) dβˆ…  k=(9/2)∫_0 ^𝛑 sin^3 βˆ…dβˆ…=(9/2)∫_0 ^𝛑 (sinβˆ…βˆ’sinβˆ…cos^2 βˆ…)dβˆ…  k=(9/2)[βˆ’cosβˆ…+((cos^3 βˆ…)/3)]_0 ^𝛑 =(9/2)(1βˆ’(1/3))  k=3  dβ€²ou^�   ∫_0 ^𝛑 ∫_0 ^(3sinβˆ…) 𝛉sinβˆ…d𝛉dβˆ…= 3 um     ..............le celebre cedric junior........
$$\boldsymbol{{k}}=\int_{\mathrm{0}} ^{\boldsymbol{\pi}} \int_{\mathrm{0}} ^{\mathrm{3}{cos}\boldsymbol{\emptyset}} \boldsymbol{\theta}{sin}\boldsymbol{\emptyset{d}\theta{d}\emptyset} \\ $$$$\boldsymbol{\mathrm{k}}=\int_{\mathrm{0}} ^{\boldsymbol{\pi}} \boldsymbol{{sin}\emptyset}\left[\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\theta}^{\mathrm{2}} \right]_{\mathrm{0}} ^{\mathrm{3}\boldsymbol{{sin}\emptyset}} \boldsymbol{\mathrm{d}\emptyset} \\ $$$$\boldsymbol{\mathrm{k}}=\frac{\mathrm{9}}{\mathrm{2}}\int_{\mathrm{0}} ^{\boldsymbol{\pi}} \boldsymbol{\mathrm{si}}\overset{\mathrm{3}} {\boldsymbol{\mathrm{n}}\emptyset\mathrm{d}\emptyset}=\frac{\mathrm{9}}{\mathrm{2}}\int_{\mathrm{0}} ^{\boldsymbol{\pi}} \left(\boldsymbol{{sin}\emptyset}βˆ’\boldsymbol{{sin}\emptyset{co}}\overset{\mathrm{2}} {\boldsymbol{{s}}\emptyset}\right)\boldsymbol{{d}\emptyset} \\ $$$$\boldsymbol{{k}}=\frac{\mathrm{9}}{\mathrm{2}}\left[βˆ’\boldsymbol{\mathrm{cos}\emptyset}+\frac{\boldsymbol{\mathrm{co}}\overset{\mathrm{3}} {\boldsymbol{\mathrm{s}}\emptyset}}{\mathrm{3}}\right]_{\mathrm{0}} ^{\boldsymbol{\pi}} =\frac{\mathrm{9}}{\mathrm{2}}\left(\mathrm{1}βˆ’\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\boldsymbol{\mathrm{k}}=\mathrm{3} \\ $$$$\boldsymbol{\mathrm{d}}'\boldsymbol{\mathrm{o}}\grave {\boldsymbol{\mathrm{u}}} \\ $$$$\int_{\mathrm{0}} ^{\boldsymbol{\pi}} \int_{\mathrm{0}} ^{\mathrm{3}\boldsymbol{{sin}\emptyset}} \boldsymbol{\theta\mathrm{sin}\emptyset{d}\theta{d}\emptyset}=\:\mathrm{3}\:{um} \\ $$$$\: \\ $$$$…………..{le}\:{celebre}\:{cedric}\:{junior}…….. \\ $$$$ \\ $$
Commented by neinhaltsieger369 last updated on 01/Nov/22
 Gracias
$$\:\mathrm{Gracias} \\ $$
Answered by mr W last updated on 28/Oct/22
=∫_0 ^Ο€ sin Ο†(∫_0 ^(3 cos Ο†) ΞΈdΞΈ)dΟ†  =∫_0 ^Ο€ sin Ο†(((9 cos^2  Ο†)/2))dΟ†  =βˆ’(9/2)∫_0 ^Ο€ cos^2  Ο†d(cos Ο†)  =βˆ’(9/2)[((cos^3  Ο†)/3)]_0 ^Ο€   =(3/2)[1βˆ’(βˆ’1)]  =3
$$=\int_{\mathrm{0}} ^{\pi} \mathrm{sin}\:\phi\left(\int_{\mathrm{0}} ^{\mathrm{3}\:\mathrm{cos}\:\phi} \theta{d}\theta\right){d}\phi \\ $$$$=\int_{\mathrm{0}} ^{\pi} \mathrm{sin}\:\phi\left(\frac{\mathrm{9}\:\mathrm{cos}^{\mathrm{2}} \:\phi}{\mathrm{2}}\right){d}\phi \\ $$$$=βˆ’\frac{\mathrm{9}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} \mathrm{cos}^{\mathrm{2}} \:\phi{d}\left(\mathrm{cos}\:\phi\right) \\ $$$$=βˆ’\frac{\mathrm{9}}{\mathrm{2}}\left[\frac{\mathrm{cos}^{\mathrm{3}} \:\phi}{\mathrm{3}}\right]_{\mathrm{0}} ^{\pi} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\left[\mathrm{1}βˆ’\left(βˆ’\mathrm{1}\right)\right] \\ $$$$=\mathrm{3} \\ $$
Commented by neinhaltsieger369 last updated on 29/Oct/22
 Thank you!
$$\:\mathrm{Thank}\:\mathrm{you}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *