Menu Close

Help-me-0-0-3cos-sin-d-d-




Question Number 179344 by neinhaltsieger369 last updated on 28/Oct/22
    Help-me!      ∫_0 ^( 𝛑) ∫_0 ^( 3cos 𝛗) 𝛉sin 𝛗d𝛉d𝛗
Helpme!0π03cosϕθsinϕdθdϕ
Commented by CElcedricjunior last updated on 29/Oct/22
k=∫_0 ^𝛑 ∫_0 ^(3cos∅) 𝛉sin∅d𝛉d∅  k=∫_0 ^𝛑 sin∅[(1/2)𝛉^2 ]_0 ^(3sin∅) d∅  k=(9/2)∫_0 ^𝛑 sin^3 ∅d∅=(9/2)∫_0 ^𝛑 (sin∅−sin∅cos^2 ∅)d∅  k=(9/2)[−cos∅+((cos^3 ∅)/3)]_0 ^𝛑 =(9/2)(1−(1/3))  k=3  d′ou^�   ∫_0 ^𝛑 ∫_0 ^(3sin∅) 𝛉sin∅d𝛉d∅= 3 um     ..............le celebre cedric junior........
k=0π03cosθsindθdk=0πsin[12θ2]03sindk=920πsind3=920π(sinsincos2)dk=92[cos+cos33]0π=92(113)k=3dou`0π03sinθsindθd=3um..lecelebrecedricjunior..
Commented by neinhaltsieger369 last updated on 01/Nov/22
 Gracias
Gracias
Answered by mr W last updated on 28/Oct/22
=∫_0 ^π sin φ(∫_0 ^(3 cos φ) θdθ)dφ  =∫_0 ^π sin φ(((9 cos^2  φ)/2))dφ  =−(9/2)∫_0 ^π cos^2  φd(cos φ)  =−(9/2)[((cos^3  φ)/3)]_0 ^π   =(3/2)[1−(−1)]  =3
=0πsinϕ(03cosϕθdθ)dϕ=0πsinϕ(9cos2ϕ2)dϕ=920πcos2ϕd(cosϕ)=92[cos3ϕ3]0π=32[1(1)]=3
Commented by neinhaltsieger369 last updated on 29/Oct/22
 Thank you!
Thankyou!

Leave a Reply

Your email address will not be published. Required fields are marked *