Question Number 146035 by KONE last updated on 10/Jul/21
$${help}\:{me}\:{please} \\ $$$$\int\frac{{ln}\left({x}+\mathrm{1}\right)}{{x}}{dx}=?? \\ $$$$ \\ $$
Answered by KONE last updated on 10/Jul/21
$${please} \\ $$
Answered by puissant last updated on 10/Jul/21
$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}}=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \\ $$$$\Rightarrow\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)=\int\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \mathrm{dx} \\ $$$$\Rightarrow\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\mathrm{x}^{\mathrm{n}+\mathrm{1}} }{\mathrm{n}+\mathrm{1}}+\mathrm{c} \\ $$$$\mathrm{x}=\mathrm{0}\:\Rightarrow\:\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\mathrm{x}^{\mathrm{n}+\mathrm{1}} }{\mathrm{n}+\mathrm{1}} \\ $$$$\Rightarrow\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{x}}=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}+\mathrm{1}} \\ $$$$\Rightarrow\int\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx}=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\int\mathrm{x}^{\mathrm{n}} \mathrm{dx} \\ $$$$\Rightarrow\:\mathrm{I}=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}} \frac{\mathrm{x}^{\mathrm{n}+\mathrm{1}} }{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} }+\mathrm{k}.. \\ $$
Commented by KONE last updated on 12/Jul/21
$${thanks}… \\ $$$${svp}\:{est}\:{possible}\:{de}\:{faire}\:{sans}\:{utiliser}\:{le}\:{DL}? \\ $$