Menu Close

help-me-please-ln-x-1-x-dx-




Question Number 146035 by KONE last updated on 10/Jul/21
help me please  ∫((ln(x+1))/x)dx=??
helpmepleaseln(x+1)xdx=??
Answered by KONE last updated on 10/Jul/21
please
please
Answered by puissant last updated on 10/Jul/21
(1/(1+x))=Σ_(n=0) ^∞ (−1)^n x^n   ⇒ln(1+x)=∫Σ_(n=0) ^∞ (−1)^n x^n dx  ⇒ln(1+x)=Σ_(n=0) ^∞ (−1)^n (x^(n+1) /(n+1))+c  x=0 ⇒ ln(1+x)=Σ_(n=0) ^∞ (−1)^n (x^(n+1) /(n+1))  ⇒((ln(1+x))/x)=Σ_(n=0) ^∞ (−1)^n (x^n /(n+1))  ⇒∫((ln(1+x))/x)dx=Σ_(n=0) ^∞ (−1)^n (1/(n+1))∫x^n dx  ⇒ I=Σ_(n=0) ^∞ (−1)^n (x^(n+1) /((n+1)^2 ))+k..
11+x=n=0(1)nxnln(1+x)=n=0(1)nxndxln(1+x)=n=0(1)nxn+1n+1+cx=0ln(1+x)=n=0(1)nxn+1n+1ln(1+x)x=n=0(1)nxnn+1ln(1+x)xdx=n=0(1)n1n+1xndxI=n=0(1)nxn+1(n+1)2+k..
Commented by KONE last updated on 12/Jul/21
thanks...  svp est possible de faire sans utiliser le DL?
thankssvpestpossibledefairesansutiliserleDL?

Leave a Reply

Your email address will not be published. Required fields are marked *