Menu Close

Help-me-sir-in-phase-sppace-d-3-p-dp-x-dp-y-dp-z-then-find-0-P-2-e-p-2-2mKT-d-3-p-




Question Number 158694 by ilhamdiii last updated on 07/Nov/21
Help me sir     in phase sppace  d^3 p=dp_x dp_(y ) dp_z   then  find   ∫_0 ^∞  P^(2 ) e^(p^2 /(2mKT ))   d^3 p  =....
Helpmesirinphasesppaced3p=dpxdpydpzthenfind0P2ep22mKTd3p=.
Answered by MrGaster last updated on 06/Jan/25
Let x=(p^2 /(1m))⇒p=(√(2mKT))×x^(1/2) dp=(√(m/(2Kp)))×x^(−1/2) dx  ∫_0 ^∞ p^2 e^(−p^2 /(2mKT)) d^3 p  =∫_0 ^∞ (2mkT)^(3/2) ×x^(3/2) ×e^(−x) ×(((√m)/( (√(2KT)))))×(1/( (√x)))dx  =(((2^(3/2) ×(mKT)^(3/2) ) )/( (√(2π))))∫_0 ^∞ x^(1/2) e^(−x) dx  ∫_0 ^∞ x^(1/2) e^(−x) dx=Γ((3/2))=((√π)/2)  (((2^(3/2) ×(mKT)^(3/2) ))/(2(√(2π))))×(√π)  =(((√2)×(mKT)^(3/2) )/(2(√(2π))))×(√π)  =(((√2)×(mKT)^(3/2) )/( (√π)))  ∫_0 ^∞ p^2 e^(−p^2 /(2mKT)) d^3 p=(((√2)×(mKT)^(3/2) )/( (√π)))
Letx=p21mp=2mKT×x12dp=m2Kp×x1/2dx0p2ep2/(2mKT)d3p=0(2mkT)32×x32×ex×(m2KT)×1xdx=(232×(mKT)32)2π0x12exdx0x1/2exdx=Γ(32)=π2(23/2×(mKT)32)22π×π=2×(mKT)3222π×π=2×(mKT)32π0p2ep2/(2mKT)d3p=2×(mKT)32π

Leave a Reply

Your email address will not be published. Required fields are marked *