Menu Close

help-me-solve-this-one-C-40-2n-C-40-16-n-




Question Number 161888 by henderson last updated on 23/Dec/21
help me !  solve this one : C_(40) ^(2n)  = C_(40) ^(16+n)
$$\mathrm{help}\:\mathrm{me}\:! \\ $$$$\mathrm{solve}\:\mathrm{this}\:\mathrm{one}\::\:\mathrm{C}_{\mathrm{40}} ^{\mathrm{2n}} \:=\:\mathrm{C}_{\mathrm{40}} ^{\mathrm{16}+\mathrm{n}} \\ $$
Commented by mr W last updated on 23/Dec/21
C_r ^k =C_r ^(r−k)   2n=40−(16+n)  ⇒n=8
$${C}_{{r}} ^{{k}} ={C}_{{r}} ^{{r}−{k}} \\ $$$$\mathrm{2}{n}=\mathrm{40}−\left(\mathrm{16}+{n}\right) \\ $$$$\Rightarrow{n}=\mathrm{8} \\ $$
Commented by greg_ed last updated on 23/Dec/21
thank you, sir W !
$$\mathrm{thank}\:\mathrm{you},\:\mathrm{sir}\:\mathrm{W}\:! \\ $$
Commented by kapoorshah last updated on 24/Dec/21
wrong!!!  k ≥ r
$${wrong}!!! \\ $$$${k}\:\geqslant\:{r} \\ $$$$ \\ $$
Commented by mr W last updated on 24/Dec/21
don′t say wrong! it′s a question of  definition. not all countries use  the same definition. in some countries  like france, russia, polen, china etc.  people write C_n ^k  instead of C_k ^n  for  the same thing ((n!)/(k!(n−k)!)).
$${don}'{t}\:{say}\:{wrong}!\:{it}'{s}\:{a}\:{question}\:{of} \\ $$$${definition}.\:{not}\:{all}\:{countries}\:{use} \\ $$$${the}\:{same}\:{definition}.\:{in}\:{some}\:{countries} \\ $$$${like}\:{france},\:{russia},\:{polen},\:{china}\:{etc}. \\ $$$${people}\:{write}\:{C}_{{n}} ^{{k}} \:{instead}\:{of}\:{C}_{{k}} ^{{n}} \:{for} \\ $$$${the}\:{same}\:{thing}\:\frac{{n}!}{{k}!\left({n}−{k}\right)!}. \\ $$
Commented by Ar Brandon last updated on 24/Dec/21
Mr W is right   C_n ^k = ^n C_k = ((n),(k) )=((n!)/(k!(n−k)!))
$$\mathrm{Mr}\:\mathrm{W}\:\mathrm{is}\:\mathrm{right}\: \\ $$$$\mathrm{C}_{{n}} ^{{k}} =\overset{{n}} {\:}\mathrm{C}_{{k}} =\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}=\frac{{n}!}{{k}!\left({n}−{k}\right)!} \\ $$
Answered by Ar Brandon last updated on 23/Dec/21
2n=16+n⇒n=16  C_(40) ^(2(16)) =C_(40) ^(16+16)
$$\mathrm{2}{n}=\mathrm{16}+{n}\Rightarrow{n}=\mathrm{16} \\ $$$${C}_{\mathrm{40}} ^{\mathrm{2}\left(\mathrm{16}\right)} =\mathrm{C}_{\mathrm{40}} ^{\mathrm{16}+\mathrm{16}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *