Question Number 179181 by neinhaltsieger369 last updated on 26/Oct/22
$$\:\mathrm{Help}-\mathrm{me}! \\ $$$$\: \\ $$$$\:\mathrm{Use}\:\mathrm{double}\:\mathrm{integral}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the} \\ $$$$\:\mathrm{region}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{following}\:\mathrm{curves}\: \\ $$$$\:\mathrm{given}\:\mathrm{in}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{shown}\:\mathrm{below}: \\ $$$$\: \\ $$$$\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{4x}\:\mathrm{and}\:\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:=\:\mathrm{4y} \\ $$
Answered by Acem last updated on 26/Oct/22
$$\:{Let}\:{C}_{\mathrm{1}} :\:{the}\:{curve}\:{x}=\:\frac{\mathrm{1}}{\mathrm{4}}\:{y}^{\mathrm{2}} \:,\:{C}_{\mathrm{2}} :\:{y}=\:\frac{\mathrm{1}}{\mathrm{4}}\:{x}^{\mathrm{2}} \\ $$$$\:{Common}\:{points}: \\ $$$$\:{By}\:{compensation}\:{x}\:{in}\:{C}_{\mathrm{2}} \\ $$$$\:{y}=\:\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\mathrm{1}}{\mathrm{16}}\:{y}^{\mathrm{4}} \:\Rightarrow\:{y}\left({y}^{\mathrm{3}} −\mathrm{64}\right)=\:\mathrm{0}\:\Rightarrow\:{y}=\:\mathrm{0}\:{or}\:{y}=\:\mathrm{4} \\ $$$$\:{p}_{\mathrm{1}} \left(\mathrm{0},\:\mathrm{0}\right)\:,\:{p}_{\mathrm{2}} \left(\mathrm{4},\mathrm{4}\right)\:;\:{x}:\:\mathrm{0}\:\rightarrow\mathrm{4} \\ $$$$\:{Within}\:{the}\:{region}\:{bounded}\:{C}_{\mathrm{1}} \:{is}\:{above}\:{the}\:{C}_{\mathrm{2}} \\ $$$$\:{because}\:{and}\:{for}\:{example}\:{for}\:{x}=\mathrm{1}\in\:\left[\mathrm{0},\:\mathrm{4}\right] \\ $$$$\:{y}_{{C}_{\mathrm{1}} } =\:\mathrm{2}\:>\:\frac{\mathrm{1}}{\mathrm{4}}=\:{y}_{{C}_{\mathrm{2}} } \:\boldsymbol{{It}}\:\boldsymbol{{prefer}}\:\boldsymbol{{to}}\:\boldsymbol{{graph}}\:\boldsymbol{{them}} \\ $$$$\:{S}=\:\int_{\mathrm{0}} ^{\:\mathrm{4}} \:\left(\mathrm{2}{x}^{\frac{\mathrm{1}}{\mathrm{2}}} −\:\frac{\mathrm{1}}{\mathrm{4}}\:{x}^{\mathrm{2}} \right){dx}=\:\frac{\mathrm{4}}{\mathrm{3}}\:\sqrt{{x}^{\mathrm{3}} }−\:\frac{\mathrm{1}}{\mathrm{12}}\:{x}^{\mathrm{3}} \:\mid_{\mathrm{0}} ^{\mathrm{4}} \\ $$$$\:{S}=\:\frac{\mathrm{32}}{\mathrm{3}}\:−\frac{\mathrm{16}}{\mathrm{3}}\:−\:\mathrm{0}\:\Rightarrow\:{S}=\:\frac{\mathrm{16}}{\mathrm{3}}\:{unit}^{\mathrm{2}} \\ $$$$ \\ $$
Commented by neinhaltsieger369 last updated on 26/Oct/22
$$\:\mathrm{Thank}\:\:\mathrm{you}! \\ $$
Commented by Acem last updated on 26/Oct/22
$${Check}\:{manxsol}'{solution} \\ $$
Commented by Acem last updated on 26/Oct/22
$${You}'{re}\:{very}\:{much}\:{welcome}! \\ $$
Commented by manxsol last updated on 27/Oct/22
$${Gracias}\:{Sr}.{Acem}.{un}\:{foro}?{muy}\:{interesante}\:{y}\:{de}\:{gran}\:{nivel} \\ $$
Answered by manxsol last updated on 26/Oct/22
Commented by Acem last updated on 26/Oct/22
$${Very}\:{well},\:{your}\:{solution}\:{is}\:{exactly}\:{what}\:{is}\:{needed} \\ $$$$\:{Thank}\:{you} \\ $$
Commented by neinhaltsieger369 last updated on 26/Oct/22
$$\:\mathrm{Thank}\:\:\mathrm{you}! \\ $$
Answered by CElcedricjunior last updated on 26/Oct/22