Question Number 179181 by neinhaltsieger369 last updated on 26/Oct/22

Answered by Acem last updated on 26/Oct/22
![Let C_1 : the curve x= (1/4) y^2 , C_2 : y= (1/4) x^2 Common points: By compensation x in C_2 y= (1/4) (1/(16)) y^4 ⇒ y(y^3 −64)= 0 ⇒ y= 0 or y= 4 p_1 (0, 0) , p_2 (4,4) ; x: 0 →4 Within the region bounded C_1 is above the C_2 because and for example for x=1∈ [0, 4] y_C_1 = 2 > (1/4)= y_C_2 It prefer to graph them S= ∫_0 ^( 4) (2x^(1/2) − (1/4) x^2 )dx= (4/3) (√x^3 )− (1/(12)) x^3 ∣_0 ^4 S= ((32)/3) −((16)/3) − 0 ⇒ S= ((16)/3) unit^2](https://www.tinkutara.com/question/Q179183.png)
Commented by neinhaltsieger369 last updated on 26/Oct/22

Commented by Acem last updated on 26/Oct/22

Commented by Acem last updated on 26/Oct/22

Commented by manxsol last updated on 27/Oct/22

Answered by manxsol last updated on 26/Oct/22

Commented by Acem last updated on 26/Oct/22

Commented by neinhaltsieger369 last updated on 26/Oct/22

Answered by CElcedricjunior last updated on 26/Oct/22
![On demande de calculer l′aire du caves delimite^� pas { ((y^2 =4x)),((x^2 =4y)) :}=> { ((x=(y^2 /4))),((x=±2(√y))) :} x=x =>(y^2 /4)=±2(√y) pour (y^2 /4)=−2(√y) impossible (y^2 /4)=2(√y)=>y^4 =64y =>y(y^3 −64)=0=>y(y^3 −4^3 )=0 =>y(y−4)(y^2 +4y+16)=0 =>y=0 ou y=4 or y^2 +4y+16>0 n′adnet pas de solution dans R Donc A=∫_0 ^4 ∫_(y^2 /4) ^(2(√y)) dxdy A=∫_0 ^4 (2(√y)−(y^2 /4))dy A=[(4/3)(√y^3 )−(y^3 /(12))]_0 ^4 =((32)/3)−((64)/(12))=((32)/3)−((16)/3) A=((16)/3) um ....................le celebre cedric junior.........](https://www.tinkutara.com/question/Q179210.png)