Menu Close

Help-me-Use-double-integral-to-find-the-area-of-the-region-bounded-by-the-following-curves-given-in-the-plane-shown-below-y-2-4x-and-x-2-4y-




Question Number 179181 by neinhaltsieger369 last updated on 26/Oct/22
 Help-me!      Use double integral to find the area of the   region bounded by the following curves    given in the plane shown below:      y^2  = 4x and  x^2  = 4y
Helpme!Usedoubleintegraltofindtheareaoftheregionboundedbythefollowingcurvesgivenintheplaneshownbelow:y2=4xandx2=4y
Answered by Acem last updated on 26/Oct/22
 Let C_1 : the curve x= (1/4) y^2  , C_2 : y= (1/4) x^2    Common points:   By compensation x in C_2    y= (1/4) (1/(16)) y^4  ⇒ y(y^3 −64)= 0 ⇒ y= 0 or y= 4   p_1 (0, 0) , p_2 (4,4) ; x: 0 →4   Within the region bounded C_1  is above the C_2    because and for example for x=1∈ [0, 4]   y_C_1  = 2 > (1/4)= y_C_2   It prefer to graph them   S= ∫_0 ^( 4)  (2x^(1/2) − (1/4) x^2 )dx= (4/3) (√x^3 )− (1/(12)) x^3  ∣_0 ^4    S= ((32)/3) −((16)/3) − 0 ⇒ S= ((16)/3) unit^2
LetC1:thecurvex=14y2,C2:y=14x2Commonpoints:BycompensationxinC2y=14116y4y(y364)=0y=0ory=4p1(0,0),p2(4,4);x:04WithintheregionboundedC1isabovetheC2becauseandforexampleforx=1[0,4]yC1=2>14=yC2ItprefertographthemS=04(2x1214x2)dx=43x3112x304S=3231630S=163unit2
Commented by neinhaltsieger369 last updated on 26/Oct/22
 Thank  you!
Thankyou!
Commented by Acem last updated on 26/Oct/22
Check manxsol′solution
Checkmanxsolsolution
Commented by Acem last updated on 26/Oct/22
You′re very much welcome!
Youreverymuchwelcome!
Commented by manxsol last updated on 27/Oct/22
Gracias Sr.Acem.un foro?muy interesante y de gran nivel
GraciasSr.Acem.unforo?muyinteresanteydegrannivel
Answered by manxsol last updated on 26/Oct/22
Commented by Acem last updated on 26/Oct/22
Very well, your solution is exactly what is needed   Thank you
Verywell,yoursolutionisexactlywhatisneededThankyou
Commented by neinhaltsieger369 last updated on 26/Oct/22
 Thank  you!
Thankyou!
Answered by CElcedricjunior last updated on 26/Oct/22
On demande de calculer l′aire du caves  delimite^�  pas    { ((y^2 =4x)),((x^2 =4y)) :}=> { ((x=(y^2 /4))),((x=±2(√y))) :}  x=x  =>(y^2 /4)=±2(√y)  pour (y^2 /4)=−2(√y) impossible  (y^2 /4)=2(√y)=>y^4 =64y  =>y(y^3 −64)=0=>y(y^3 −4^3 )=0  =>y(y−4)(y^2 +4y+16)=0  =>y=0 ou y=4 or y^2 +4y+16>0 n′adnet pas de solution dans R  Donc  A=∫_0 ^4 ∫_(y^2 /4) ^(2(√y)) dxdy  A=∫_0 ^4 (2(√y)−(y^2 /4))dy  A=[(4/3)(√y^3 )−(y^3 /(12))]_0 ^4 =((32)/3)−((64)/(12))=((32)/3)−((16)/3)  A=((16)/3)   um       ....................le celebre cedric junior.........
Ondemandedecalculerlaireducavesdelimite´pas{y2=4xx2=4y=>{x=y24x=±2yx=x=>y24=±2ypoury24=2yimpossibley24=2y=>y4=64y=>y(y364)=0=>y(y343)=0=>y(y4)(y2+4y+16)=0=>y=0ouy=4ory2+4y+16>0nadnetpasdesolutiondansRDoncA=04y242ydxdyA=04(2yy24)dyA=[43y3y312]04=3236412=323163A=163um..lecelebrecedricjunior

Leave a Reply

Your email address will not be published. Required fields are marked *