Menu Close

help-n-1-1-2n-1-




Question Number 106365 by Mikael_786 last updated on 04/Aug/20
help  Σ_(n=1) ^∞ (1/((2n−1)!))
$$\mathrm{help} \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2n}−\mathrm{1}\right)!} \\ $$
Commented by Dwaipayan Shikari last updated on 04/Aug/20
or sin h(1)
$${or}\:{sin}\:{h}\left(\mathrm{1}\right) \\ $$
Answered by Dwaipayan Shikari last updated on 04/Aug/20
Commented by Mikael_786 last updated on 04/Aug/20
thanks Sir
$$\mathrm{thanks}\:\mathrm{Sir} \\ $$
Commented by Ar Brandon last updated on 04/Aug/20
��wow ! What triggered you into using this identity, Shikari ? Or it's just from experience ?��
Commented by Dwaipayan Shikari last updated on 05/Aug/20
It includes factorial series .So I assumed exponential series may be useful.��
Commented by Ar Brandon last updated on 05/Aug/20
Alright, cool �� That was brilliant ��
Answered by mathmax by abdo last updated on 04/Aug/20
we have e^x  =Σ_(n=0) ^∞  (x^n /(n!)) and e^(−x)  =Σ_(n=0) ^∞ (((−1)^n x^n )/(n!)) ⇒  e^x −e^(−x)  =Σ_(n=0) ^∞ (1/(n!))(1−(−1)^n )x^n  =Σ_(n=0) ^∞  ((2 x^(2n+1) )/((2n+1)!)) ⇒  ((e^x −e^(−x) )/2) =Σ_(n=0) ^∞  (x^(2n+1) /((2n+1)!)) =_(n=p−1)   Σ_(p=1) ^∞  (x^(2p−1) /((2p−1)!))  (=sh(x))  x =1 we get ((e−e^(−1) )/2) =Σ_(p=1) ^∞  (1/((2p−1)!)) ⇒  Σ_(p=1) ^∞  (1/((2p−1)!)) =((e−(1/e))/2) =((e^2 −1)/(2e)) ( =sh(1))
$$\mathrm{we}\:\mathrm{have}\:\mathrm{e}^{\mathrm{x}} \:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}!}\:\mathrm{and}\:\mathrm{e}^{−\mathrm{x}} \:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{x}^{\mathrm{n}} }{\mathrm{n}!}\:\Rightarrow \\ $$$$\mathrm{e}^{\mathrm{x}} −\mathrm{e}^{−\mathrm{x}} \:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{n}!}\left(\mathrm{1}−\left(−\mathrm{1}\right)^{\mathrm{n}} \right)\mathrm{x}^{\mathrm{n}} \:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}\:\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\:\Rightarrow \\ $$$$\frac{\mathrm{e}^{\mathrm{x}} −\mathrm{e}^{−\mathrm{x}} }{\mathrm{2}}\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\:=_{\mathrm{n}=\mathrm{p}−\mathrm{1}} \:\:\sum_{\mathrm{p}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{2p}−\mathrm{1}} }{\left(\mathrm{2p}−\mathrm{1}\right)!}\:\:\left(=\mathrm{sh}\left(\mathrm{x}\right)\right) \\ $$$$\mathrm{x}\:=\mathrm{1}\:\mathrm{we}\:\mathrm{get}\:\frac{\mathrm{e}−\mathrm{e}^{−\mathrm{1}} }{\mathrm{2}}\:=\sum_{\mathrm{p}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2p}−\mathrm{1}\right)!}\:\Rightarrow \\ $$$$\sum_{\mathrm{p}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2p}−\mathrm{1}\right)!}\:=\frac{\mathrm{e}−\frac{\mathrm{1}}{\mathrm{e}}}{\mathrm{2}}\:=\frac{\mathrm{e}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2e}}\:\left(\:=\mathrm{sh}\left(\mathrm{1}\right)\right)\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *