Menu Close

Help-please-to-solve-this-If-f-x-1-x-2-for-x-2-2-and-f-x-5-otherwise-Then-what-is-the-value-of-2-2-f-2x-2-dx-




Question Number 116687 by megrex last updated on 05/Oct/20
Help please, to solve this ...  If f(x)=1+x^2   for x∈[−2,2] and         f(x)=5        otherwise.  Then what is the value of  ∫_(−2) ^(+2) f(2x^2 )dx?
Helpplease,tosolvethisIff(x)=1+x2forx[2,2]andf(x)=5otherwise.Thenwhatisthevalueof2+2f(2x2)dx?
Answered by Olaf last updated on 05/Oct/20
f is even and I = ∫_(−2) ^(+2) f(2x^2 )dx =2∫_0 ^2 f(2x^2 )dx  2x^2  ≤ 2 ⇔ x ≤ 1  In this case f(2x^2 ) = 1+4x^4   f(2x^2 ) = 5 otherwise.    I = 2∫_0 ^1 (1+4x^4 )dx+2∫_1 ^2 5dx  I = 2(1+(4/5))+10 = ((68)/5)
fisevenandI=2+2f(2x2)dx=202f(2x2)dx2x22x1Inthiscasef(2x2)=1+4x4f(2x2)=5otherwise.I=201(1+4x4)dx+2125dxI=2(1+45)+10=685
Commented by megrex last updated on 05/Oct/20
Thankyou Olaf.
ThankyouOlaf.
Answered by Olaf last updated on 05/Oct/20
  other method :  u = 2x^2   du = 4xdx = 4(√(u/2))dx  dx = (du/( 2(√2)(√u)))  I = 2∫_0 ^(+2) f(2x^2 )dx = (1/( (√2)))∫_0 ^8 f(u)(du/( (√u)))  I = (1/( (√2)))∫_0 ^2 ((1+u^2 )/( (√u)))du+(1/( (√2)))∫_2 ^8 (5/( (√u)))du  I = (1/( (√2)))[2(√u)+(2/5)u^(5/2) ]_0 ^2 +(1/( (√2)))[10(√u)]_2 ^8   I = 2+(8/5)+(1/( (√2)))(10(√8)−10(√2))  I = 2+(8/5)+10 = ((68)/5)
othermethod:u=2x2du=4xdx=4u2dxdx=du22uI=20+2f(2x2)dx=1208f(u)duuI=12021+u2udu+12285uduI=12[2u+25u5/2]02+12[10u]28I=2+85+12(108102)I=2+85+10=685
Commented by megrex last updated on 05/Oct/20
Very nice!  Many thanks.
Verynice!Manythanks.

Leave a Reply

Your email address will not be published. Required fields are marked *