Menu Close

Help-please-x-x-1-2-0-x-2017-x-2017-2-




Question Number 184424 by Fridunatjan08 last updated on 06/Jan/23
Help please:   { ((x+x^(−1) −(√2)=0)),((x^(2017) +x^(2017) +(√2)=?)) :}
$${Help}\:{please}: \\ $$$$\begin{cases}{{x}+{x}^{−\mathrm{1}} −\sqrt{\mathrm{2}}=\mathrm{0}}\\{{x}^{\mathrm{2017}} +{x}^{\mathrm{2017}} +\sqrt{\mathrm{2}}=?}\end{cases} \\ $$
Commented by Rasheed.Sindhi last updated on 06/Jan/23
x^(2017) +x^(−2017) +(√2)=? ?
$${x}^{\mathrm{2017}} +{x}^{−\mathrm{2017}} +\sqrt{\mathrm{2}}=?\:? \\ $$
Answered by Rasheed.Sindhi last updated on 06/Jan/23
 { ((x+x^(−1) −(√2)=0)),((x^(2017) +x^(−2017) +(√2)=?)) :}  x(x+x^(−1) −(√2) =0)⇒x^2 =(√2) x−1  x^3 =(√2) x^2 −x=(√2) ((√2) x−1)−x=x−(√2)   x^4 =x^2 −(√2) x=(√2) x−1−(√2) x=−1    x^(2017) +x^(−2017) +(√2)  =(x^4 )^(504) x+(x^4 )^(−504) x^(−1) +(√2)   =(−1)^(504) x+(−1)^(−504) x^(−1) +(√2)  =x+x^(−1) +(√2) =(√2) +(√2) =2(√(2 ))✓
$$\begin{cases}{{x}+{x}^{−\mathrm{1}} −\sqrt{\mathrm{2}}=\mathrm{0}}\\{{x}^{\mathrm{2017}} +{x}^{−\mathrm{2017}} +\sqrt{\mathrm{2}}=?}\end{cases} \\ $$$${x}\left({x}+{x}^{−\mathrm{1}} −\sqrt{\mathrm{2}}\:=\mathrm{0}\right)\Rightarrow{x}^{\mathrm{2}} =\sqrt{\mathrm{2}}\:{x}−\mathrm{1} \\ $$$${x}^{\mathrm{3}} =\sqrt{\mathrm{2}}\:{x}^{\mathrm{2}} −{x}=\sqrt{\mathrm{2}}\:\left(\sqrt{\mathrm{2}}\:{x}−\mathrm{1}\right)−{x}={x}−\sqrt{\mathrm{2}}\: \\ $$$${x}^{\mathrm{4}} ={x}^{\mathrm{2}} −\sqrt{\mathrm{2}}\:{x}=\sqrt{\mathrm{2}}\:{x}−\mathrm{1}−\sqrt{\mathrm{2}}\:{x}=−\mathrm{1} \\ $$$$ \\ $$$${x}^{\mathrm{2017}} +{x}^{−\mathrm{2017}} +\sqrt{\mathrm{2}} \\ $$$$=\left({x}^{\mathrm{4}} \right)^{\mathrm{504}} {x}+\left({x}^{\mathrm{4}} \right)^{−\mathrm{504}} {x}^{−\mathrm{1}} +\sqrt{\mathrm{2}}\: \\ $$$$=\left(−\mathrm{1}\right)^{\mathrm{504}} {x}+\left(−\mathrm{1}\right)^{−\mathrm{504}} {x}^{−\mathrm{1}} +\sqrt{\mathrm{2}} \\ $$$$={x}+{x}^{−\mathrm{1}} +\sqrt{\mathrm{2}}\:=\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{2}}\:=\mathrm{2}\sqrt{\mathrm{2}\:}\checkmark \\ $$
Answered by mr W last updated on 06/Jan/23
x+(1/x)=(√2)  ⇒x^2 +(1/x^2 )+2=2  ⇒x^2 +(1/x^2 )=0  ⇒x^4 =−1  x^(2017) +(1/x^(2017) )+(√2)  =(x^4 )^(504) x+(1/((x^4 )^(504) x))+(√2)  =x+(1/x)+(√2)  =(√2)+(√2)  =2(√2)
$${x}+\frac{\mathrm{1}}{{x}}=\sqrt{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\mathrm{2}=\mathrm{2} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow{x}^{\mathrm{4}} =−\mathrm{1} \\ $$$${x}^{\mathrm{2017}} +\frac{\mathrm{1}}{{x}^{\mathrm{2017}} }+\sqrt{\mathrm{2}} \\ $$$$=\left({x}^{\mathrm{4}} \right)^{\mathrm{504}} {x}+\frac{\mathrm{1}}{\left({x}^{\mathrm{4}} \right)^{\mathrm{504}} {x}}+\sqrt{\mathrm{2}} \\ $$$$={x}+\frac{\mathrm{1}}{{x}}+\sqrt{\mathrm{2}} \\ $$$$=\sqrt{\mathrm{2}}+\sqrt{\mathrm{2}} \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *