Menu Close

Help-plz-Given-2d-2-x-dt-2-2dx-dt-x-ksint-where-k-is-constant-show-that-if-x-n-and-dx-dt-0-when-t-0-then-x-e-1-2t-n-2-5k-cos-t-2-n-4-5k-sin-t-2-1-5ksint-2-5kcost-




Question Number 16514 by Sai dadon. last updated on 23/Jun/17
Help plz  Given 2d^2 x/dt^2 +2dx/dt+x=ksint  where k is constant show that if x=n  and dx/dt=0 when t=0 then   x=e^(−1/2t) {(n+2/5k)cos(t/2)+)+(n+4/5k)sin(t/2)}  −1/5ksint−2/5kcost.
HelpplzGiven2d2x/dt2+2dx/dt+x=ksintwherekisconstantshowthatifx=nanddx/dt=0whent=0thenx=e1/2t{(n+2/5k)cos(t/2)+)+(n+4/5k)sin(t/2)}1/5ksint2/5kcost.
Commented by Sai dadon. last updated on 23/Jun/17
I need help guys.
Ineedhelpguys.
Answered by ajfour last updated on 23/Jun/17
 characteristic equation is:    2λ^2 +2λ+1=0   λ=((−2±(√(4−8)))/4)   ⇒  λ_1 =−(1/2)+(i/2) , λ_2 =−(1/2)−(i/2)   x_h = e^(−t/2) [Acos (t/2)+Bsin (t/2)]  let x_p =Kcos t+Msin t         x_p ^′ =−Ksin t+Mcos  t        x_p ^(′′) =−Kcos t−Msin t =− x_p   substituting x=x_p  in   2x^(′′) +2x′+x=k sin t    −2x_p +2x_p ^′ +x_p = k sin t    2x_p ^′ −x_p =k sin t    2(−Ksin t+Mcos t)       −Msin t−Kcos t = k sin t  ⇒  2K+M=−k     and         2M−K = 0   or  K=2M   so,       5M=−k            M= −(k/5)  and K=−(2/5)         x_p = −((2k)/5)cos t−(k/5)sin t  the general solution is then   x= e^(−t/2) [Acos (t/2)+Bsin (t/2)]                  −((2k)/5)cos t−(k/5)sin t   ...(i)   with x=n   for t=0    in (i) gives  n= A−((2k)/5)     ⇒ A = n+((2k)/5)   (dx/dt)=−(1/2)e^(−t/2) [Acos (t/2)+Bsin (t/2)]    +e^(−t/2) [−(A/2)sin (t/2)+(B/2)cos (t/2)]           +((2k)/5)sin t−(k/5)cos t  at t=0  we have  (dx/dt)=0 ,  so   0= −(A/2)+(B/2)−(k/5)    B= ((2k)/5)+A = ((2k)/5)+n+((2k)/5)    B = n+((4k)/5) , we then have   x=e^(−t/2) {(n+((2k)/5))cos (t/2)+(n+((4k)/5))sin (t/2)}        −(k/5)sin t−((2k)/5)cos t .
characteristicequationis:2λ2+2λ+1=0λ=2±484λ1=12+i2,λ2=12i2xh=et/2[Acos(t/2)+Bsin(t/2)]letxp=Kcost+Msintxp=Ksint+Mcostxp=KcostMsint=xpsubstitutingx=xpin2x+2x+x=ksint2xp+2xp+xp=ksint2xpxp=ksint2(Ksint+Mcost)MsintKcost=ksint2K+M=kand2MK=0orK=2Mso,5M=kM=k5andK=25xp=2k5costk5sintthegeneralsolutionisthenx=et/2[Acos(t/2)+Bsin(t/2)]2k5costk5sint(i)withx=nfort=0in(i)givesn=A2k5A=n+2k5dxdt=12et/2[Acos(t/2)+Bsin(t/2)]+et/2[A2sin(t/2)+B2cos(t/2)]+2k5sintk5costatt=0wehavedxdt=0,so0=A2+B2k5B=2k5+A=2k5+n+2k5B=n+4k5,wethenhavex=et/2{(n+2k5)cost2+(n+4k5)sint2}k5sint2k5cost.
Commented by Sai dadon. last updated on 23/Jun/17
Thank you aj.  God bless you.
Thankyouaj.Godblessyou.

Leave a Reply

Your email address will not be published. Required fields are marked *