Menu Close

Hi-Prove-that-e-x-2-dx-pi-Thanks-beforehand-




Question Number 116806 by Backer last updated on 07/Oct/20
Hi  Prove that:   ∫_(-∞) ^(+∞) -e^(-x^2 ) dx=(√π)  Thanks beforehand
HiProvethat:+ex2dx=πThanksbeforehand
Answered by Bird last updated on 07/Oct/20
let A_ξ =∫∫_(]−ξ,ξ[^2 )   e^(−x^2 −y^2 ) dxdy  we hsve lim_(ξ→+∞)  A_ξ =(∫_(−∞) ^∞  e^(−x^2 ) dx)^2   let use the diffeomorphism   { ((x =rcosθ)),((y =rsinθ     we have −ξ≤x≤ξ)) :}  and −ξ≤y≤ξ ⇒0≤x^2 +y^2 ≤2ξ^2   ⇒0≤r≤ξ(√2) ⇒  A_ξ =∫_0 ^(ξ(√2)) r e^(−r^2 ) dr ∫_(−π) ^π  dθ  =2π [−(1/2)e^(−r^2 ) ]_0 ^(ξ(√2))   =π(1−e^(−2ξ^2 ) ) ⇒lim_(ξ→+∞) A_ξ =π  =(∫_(−∞) ^(+∞)  e^(−x^2 ) dx)^2   but∫_(−∞) ^∞  e^(−x^2 ) dx>0  ⇒∫_(−∞) ^(+∞)  e^(−x^2 ) dx =(√π)
letAξ=]ξ,ξ[2ex2y2dxdywehsvelimξ+Aξ=(ex2dx)2letusethediffeomorphism{x=rcosθy=rsinθwehaveξxξandξyξ0x2+y22ξ20rξ2Aξ=0ξ2rer2drππdθ=2π[12er2]0ξ2=π(1e2ξ2)limξ+Aξ=π=(+ex2dx)2butex2dx>0+ex2dx=π
Answered by bobhans last updated on 07/Oct/20
I=∫_(−∞) ^∞ e^(−x^2 )  dx ⇒I^2 =∫_(−∞) ^∞ ∫_(−∞) ^∞ e^(−x^2 −y^2 )  dx dy  I^2  = ∫_0 ^∞   ∫_0 ^(2π)  r e^(−r^2 )  dθ dr =∫_0 ^∞ ∣(re^(−r^2 )  (θ))∣_0 ^(2π)  )dr  I^2  =2π ∫_0 ^∞ re^(−r^2 )  dr = π ∫_0 ^∞  e^(−r^2 )  d(r^2 )  I^2  = −π ∣(e^(−r^2 ) )∣_0 ^∞ = −π(0−1)=π  Hence I = (√π)
I=ex2dxI2=ex2y2dxdyI2=02π0rer2dθdr=0(rer2(θ))02π)drI2=2π0rer2dr=π0er2d(r2)I2=π(er2)0=π(01)=πHenceI=π

Leave a Reply

Your email address will not be published. Required fields are marked *