Menu Close

hi-show-that-the-following-sequence-is-limited-U-n-3n-2-2n-1-precise-the-upper-and-lower-




Question Number 84215 by mathocean1 last updated on 10/Mar/20
hi  show that the following sequence  is limited:  U_n =((3n+2)/(2n+1))  precise the upper and lower.
$${hi} \\ $$$${show}\:{that}\:{the}\:{following}\:{sequence} \\ $$$${is}\:{limited}: \\ $$$${U}_{{n}} =\frac{\mathrm{3}{n}+\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}} \\ $$$${precise}\:{the}\:{upper}\:{and}\:{lower}. \\ $$
Answered by Rio Michael last updated on 10/Mar/20
lim_(nā†’āˆž)  U_n  = lim_(nā†’āˆž) ((3n + 2)/(2n + 1)) = (3/2)
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:{U}_{{n}} \:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{3}{n}\:+\:\mathrm{2}}{\mathrm{2}{n}\:+\:\mathrm{1}}\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *