Menu Close

hi-x-pi-4-pi-3-f-x-1-cos-x-primitive-of-f-x-




Question Number 168225 by henderson last updated on 06/Apr/22
hi !  x ∈ ](π/4) ; (π/3)[  f (x) = (1/(cos x))  primitive of f(x).
hi!x]π4;π3[f(x)=1cosxprimitiveoff(x).
Answered by MJS_new last updated on 06/Apr/22
∫_(π/4) ^(π/3)  (dx/(cos x))=       [t=tan (x/2) → dx=((2dt)/(t^2 +1))]  =−2∫_(−1+(√2)) ^(1/(√3))  (dt/(t^2 −1))=∫((1/(t+1))−(1/(t+1)))dt=  =[ln ∣t+1∣ −ln ∣t−1∣]_(−1+(√2)) ^(1/(√3)) =  =ln (2+(√3)) −ln (1+(√2))    ∫(dx/(cos x))=ln ∣tan ((x/2)+(π/4))∣ +C=  =ln ∣((cos x)/(1−sin x))∣ +C
π/3π/4dxcosx=[t=tanx2dx=2dtt2+1]=21/31+2dtt21=(1t+11t+1)dt==[lnt+1lnt1]1+21/3==ln(2+3)ln(1+2)dxcosx=lntan(x2+π4)+C==lncosx1sinx+C
Answered by floor(10²Eta[1]) last updated on 06/Apr/22
∫_(π/4) ^(π/3) (1/(cosx))dx=∫_(π/4) ^(π/3) ((cosx)/(cos^2 x))dx=∫_(π/4) ^(π/3) ((cosx)/(1−sin^2 x))dx  u=sinx⇒du=cosxdx  ∫_((√2)/2) ^((√3)/2) (du/(1−u^2 ))=(1/2)∫_((√2)/2) ^((√3)/2) ((1/(1−u))+(1/(1+u)))du  =−(1/2)[ln∣1−u∣]_((√2)/2) ^((√3)/2) +(1/2)[ln∣1+u∣]_((√2)/2) ^((√3)/2)   −(1/2)(ln(1−((√3)/2))−ln(1−((√2)/2)))+(1/2)(ln(1+((√3)/2))−ln(1+((√2)/2)))  =−(1/2)ln(((2−(√3))/2))+(1/2)ln(((2−(√2))/2))+(1/2)ln(((2+(√3))/2))−(1/2)ln(((2+(√2))/2))  =(1/2)ln(((2+(√3))/(2−(√3))))−(1/2)ln(((2+(√2))/(2−(√2))))  =ln(2+(√3))−ln(2+(√2))+ln(√2)  =ln(((2+(√3))/( (√2)+1)))
π/4π/31cosxdx=π/4π/3cosxcos2xdx=π/4π/3cosx1sin2xdxu=sinxdu=cosxdx2/23/2du1u2=122/23/2(11u+11+u)du=12[ln1u]2/23/2+12[ln1+u]2/23/212(ln(132)ln(122))+12(ln(1+32)ln(1+22))=12ln(232)+12ln(222)+12ln(2+32)12ln(2+22)=12ln(2+323)12ln(2+222)=ln(2+3)ln(2+2)+ln2=ln(2+32+1)
Commented by floor(10²Eta[1]) last updated on 06/Apr/22
thanks i corrected it
thanksicorrectedit
Commented by MJS_new last updated on 06/Apr/22
something went wrong in the last part after  inserting the values. the integral solution is  ok but the result must be  ln ((2+(√3))(−1+(√2))) =ln (2+(√3)) −ln (1+(√2))
somethingwentwronginthelastpartafterinsertingthevalues.theintegralsolutionisokbuttheresultmustbeln((2+3)(1+2))=ln(2+3)ln(1+2)

Leave a Reply

Your email address will not be published. Required fields are marked *