Question Number 168225 by henderson last updated on 06/Apr/22
 ; (π/3)[ f (x) = (1/(cos x)) primitive of f(x).](https://www.tinkutara.com/question/Q168225.png)
Answered by MJS_new last updated on 06/Apr/22
![∫_(π/4) ^(π/3) (dx/(cos x))= [t=tan (x/2) → dx=((2dt)/(t^2 +1))] =−2∫_(−1+(√2)) ^(1/(√3)) (dt/(t^2 −1))=∫((1/(t+1))−(1/(t+1)))dt= =[ln ∣t+1∣ −ln ∣t−1∣]_(−1+(√2)) ^(1/(√3)) = =ln (2+(√3)) −ln (1+(√2)) ∫(dx/(cos x))=ln ∣tan ((x/2)+(π/4))∣ +C= =ln ∣((cos x)/(1−sin x))∣ +C](https://www.tinkutara.com/question/Q168236.png)
Answered by floor(10²Eta[1]) last updated on 06/Apr/22
![∫_(π/4) ^(π/3) (1/(cosx))dx=∫_(π/4) ^(π/3) ((cosx)/(cos^2 x))dx=∫_(π/4) ^(π/3) ((cosx)/(1−sin^2 x))dx u=sinx⇒du=cosxdx ∫_((√2)/2) ^((√3)/2) (du/(1−u^2 ))=(1/2)∫_((√2)/2) ^((√3)/2) ((1/(1−u))+(1/(1+u)))du =−(1/2)[ln∣1−u∣]_((√2)/2) ^((√3)/2) +(1/2)[ln∣1+u∣]_((√2)/2) ^((√3)/2) −(1/2)(ln(1−((√3)/2))−ln(1−((√2)/2)))+(1/2)(ln(1+((√3)/2))−ln(1+((√2)/2))) =−(1/2)ln(((2−(√3))/2))+(1/2)ln(((2−(√2))/2))+(1/2)ln(((2+(√3))/2))−(1/2)ln(((2+(√2))/2)) =(1/2)ln(((2+(√3))/(2−(√3))))−(1/2)ln(((2+(√2))/(2−(√2)))) =ln(2+(√3))−ln(2+(√2))+ln(√2) =ln(((2+(√3))/( (√2)+1)))](https://www.tinkutara.com/question/Q168241.png)
Commented by floor(10²Eta[1]) last updated on 06/Apr/22

Commented by MJS_new last updated on 06/Apr/22
