Menu Close

how-can-demonstred-that-a-b-c-N-a-2-b-2-c-2-abc-0-60-




Question Number 23050 by jazary last updated on 25/Oct/17
how can demonstred that      ∀a,b,c∈N   a^2 +b^2 =c^2   ⇒  abc≡0[60]
howcandemonstredthata,b,cNa2+b2=c2abc0[60]
Answered by Rasheed.Sindhi last updated on 29/Oct/17
abc≡0[60]⇒60∣abc    ⇒(4.3.5)∣abc  ⇒4∣abc ∧ 3∣abc ∧ 5∣abc  ^• 4∣abc⇒4∣ab ∨ 4∣bc ∨ 4∣ ac......(i)  ^• 3∣abc⇒3∣a ∨ 3∣b ∨ 3∣c...........(ii)  ^• 5∣abc⇒5∣a ∨ 5∣b ∨ 5∣c..........(iii)  We have to prove:  Case-1:(i):4∤ab ∧ 4∤bc⇒4∣ac     This can be proved like Case-2  Case-2:(ii):3∤a ∧ 3∤b⇒3∣c  3∤a ∧ 3∤b means a and b or of  3k+1 or  3k+2 type  ⇒a^2  and b^2  are of 3k+1 type  c=(√(a^2 +b^2  ))  =(√((3k+1)+(3l+1)))     =(√(3m+2))  But 3m+2 is not perfect square  ∴ If  c∈N⇒a^2 +b^2  is perfect square  ⇒a^2 and b^2  are not both of type       3k+1.  ∴ a or b aren′t of type 3k+1 or  3k+2.  ∴ a or b is 3k-type  ∴ 3∣a or 3∣b  ∴3∣abc  Case-3:(iii):5∤a ∧ 5∤b⇒5∣c    This case can also be proved like Case-2  4∣abc   Case-1  3∣abc   Case-2  5∣abc    Case-3  Hence 60∣abc  Or abc≡0[60]
abc0[60]60abc(4.3.5)abc4abc3abc5abc4abc4ab4bc4ac(i)3abc3a3b3c..(ii)5abc5a5b5c.(iii)Wehavetoprove:Case1:(i):4ab4bc4acThiscanbeprovedlikeCase2Case2:(ii):3a3b3c3a3bmeansaandborof3k+1or3k+2typea2andb2areof3k+1typec=a2+b2=(3k+1)+(3l+1)=3m+2But3m+2isnotperfectsquareIfcNa2+b2isperfectsquarea2andb2arenotbothoftype3k+1.aorbarentoftype3k+1or3k+2.aorbis3ktype3aor3b3abcCase3:(iii):5a5b5cThiscasecanalsobeprovedlikeCase24abcCase13abcCase25abcCase3Hence60abcOrabc0[60]

Leave a Reply

Your email address will not be published. Required fields are marked *