Menu Close

how-can-find-the-sum-i-1-r-2v-i-1-




Question Number 192550 by mokys last updated on 20/May/23
how can find the sum Σ_(i=1) ^r (2v_i +1) ?
$${how}\:{can}\:{find}\:{the}\:{sum}\:\underset{{i}=\mathrm{1}} {\overset{{r}} {\sum}}\left(\mathrm{2}{v}_{{i}} +\mathrm{1}\right)\:? \\ $$
Answered by a.lgnaoui last updated on 20/May/23
S_i =Σ_(i=1) ^(i=r) (2v_i +1)=1+2Σ_(i=1) ^(i=r) v_i   =1+2(v_1 +v_2 +v_3 +....v_r )
$$\mathrm{S}_{\mathrm{i}} =\sum_{\mathrm{i}=\mathrm{1}} ^{\mathrm{i}=\mathrm{r}} \left(\mathrm{2v}_{\mathrm{i}} +\mathrm{1}\right)=\mathrm{1}+\mathrm{2}\sum_{\mathrm{i}=\mathrm{1}} ^{\mathrm{i}=\mathrm{r}} \mathrm{v}_{\mathrm{i}} \\ $$$$=\mathrm{1}+\mathrm{2}\left(\mathrm{v}_{\mathrm{1}} +\mathrm{v}_{\mathrm{2}} +\mathrm{v}_{\mathrm{3}} +….\mathrm{v}_{\mathrm{r}} \right) \\ $$
Commented by JDamian last updated on 20/May/23
wrong  =r+2(v_1 +v_2 +v_3 +....v_r )
$${wrong} \\ $$$$=\boldsymbol{{r}}+\mathrm{2}\left(\mathrm{v}_{\mathrm{1}} +\mathrm{v}_{\mathrm{2}} +\mathrm{v}_{\mathrm{3}} +….\mathrm{v}_{\mathrm{r}} \right) \\ $$
Commented by a.lgnaoui last updated on 20/May/23
2Σ_(i=1) ^(i=r) v_i +(1+1+1+...+1)       (1×r)   =r+2Σ_(i=1) ^(i=r) v_i   thanks   for help
$$\mathrm{2}\sum_{\mathrm{i}=\mathrm{1}} ^{\mathrm{i}=\mathrm{r}} \mathrm{v}_{\mathrm{i}} +\left(\mathrm{1}+\mathrm{1}+\mathrm{1}+…+\mathrm{1}\right)\:\:\:\:\:\:\:\left(\mathrm{1}×\mathrm{r}\right)\: \\ $$$$=\mathrm{r}+\mathrm{2}\sum_{\mathrm{i}=\mathrm{1}} ^{\mathrm{i}=\mathrm{r}} \mathrm{v}_{\mathrm{i}} \\ $$$$\mathrm{thanks}\:\:\:\mathrm{for}\:\mathrm{help} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *