Question Number 150064 by n0y0n last updated on 09/Aug/21
$$\mathrm{How}\:\mathrm{can}\:\mathrm{i}\:\mathrm{evaluate}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\: \\ $$$$\:\:\int_{\mathrm{2}} ^{\:\mathrm{4}} \frac{\mathrm{e}^{\mathrm{t}} }{\mathrm{t}}\mathrm{dt}\:=\:? \\ $$
Answered by Ar Brandon last updated on 09/Aug/21
$$\int_{\mathrm{2}} ^{\mathrm{4}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{t}^{{n}−\mathrm{1}} }{{n}!}{dt}=\mathrm{ln2}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{4}^{{n}} −\mathrm{2}^{{n}} }{{n}\left({n}!\right)}+{C} \\ $$
Commented by n0y0n last updated on 09/Aug/21
$$\mathrm{English} \\ $$$$ \\ $$
Commented by puissant last updated on 09/Aug/21
$${la}\:{somme}\:{commence}\:\mathrm{1}… \\ $$
Commented by Ar Brandon last updated on 09/Aug/21
$$\mathrm{Pour}\:{n}=\mathrm{0}\:\mathrm{on}\:\mathrm{a}\:\int_{\mathrm{2}} ^{\mathrm{4}} \frac{\mathrm{1}}{{t}}{dt}=\mathrm{ln2} \\ $$
Commented by puissant last updated on 09/Aug/21
$${oui}\:{j}'{ai}\:{vu}..\:{Einstein}.. \\ $$