Menu Close

How-can-i-evaluate-the-value-of-2-4-e-t-t-dt-




Question Number 150064 by n0y0n last updated on 09/Aug/21
How can i evaluate the value of       ∫_2 ^( 4) (e^t /t)dt = ?
$$\mathrm{How}\:\mathrm{can}\:\mathrm{i}\:\mathrm{evaluate}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\: \\ $$$$\:\:\int_{\mathrm{2}} ^{\:\mathrm{4}} \frac{\mathrm{e}^{\mathrm{t}} }{\mathrm{t}}\mathrm{dt}\:=\:? \\ $$
Answered by Ar Brandon last updated on 09/Aug/21
∫_2 ^4 Σ_(n=0) ^∞ (t^(n−1) /(n!))dt=ln2+Σ_(n≥1) ((4^n −2^n )/(n(n!)))+C
$$\int_{\mathrm{2}} ^{\mathrm{4}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{t}^{{n}−\mathrm{1}} }{{n}!}{dt}=\mathrm{ln2}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{4}^{{n}} −\mathrm{2}^{{n}} }{{n}\left({n}!\right)}+{C} \\ $$
Commented by n0y0n last updated on 09/Aug/21
English
$$\mathrm{English} \\ $$$$ \\ $$
Commented by puissant last updated on 09/Aug/21
la somme commence 1...
$${la}\:{somme}\:{commence}\:\mathrm{1}… \\ $$
Commented by Ar Brandon last updated on 09/Aug/21
Pour n=0 on a ∫_2 ^4 (1/t)dt=ln2
$$\mathrm{Pour}\:{n}=\mathrm{0}\:\mathrm{on}\:\mathrm{a}\:\int_{\mathrm{2}} ^{\mathrm{4}} \frac{\mathrm{1}}{{t}}{dt}=\mathrm{ln2} \\ $$
Commented by puissant last updated on 09/Aug/21
oui j′ai vu.. Einstein..
$${oui}\:{j}'{ai}\:{vu}..\:{Einstein}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *