Menu Close

How-can-such-questions-be-solved-x-2-7-10-0-x-2-x-6-gt-0-




Question Number 64015 by Rio Michael last updated on 12/Jul/19
 How can such questions be solved.?    x^2 −∣7∣ +10=0    x^2 −∣x∣−6>0
Howcansuchquestionsbesolved.?x27+10=0x2x6>0
Answered by MJS last updated on 12/Jul/19
x^2 −∣x∣−6=0  case 1: x<0 ⇒ ∣x∣=−x  x^2 +x−6=0 ⇒ x=−3∨x=2 but x<0 ⇒ x=−3  case 2: x≥0 ⇒ ∣x∣=x  x^2 −x−6=0 ⇒ x=−2∨x=3 but x≥0 ⇒ x=3    x^2 −∣x∣−6=0 ⇒ x=±3  x^2 −∣x∣−6>0 ⇒ x<−3∨x>3
x2x6=0case1:x<0x∣=xx2+x6=0x=3x=2butx<0x=3case2:x0x∣=xx2x6=0x=2x=3butx0x=3x2x6=0x=±3x2x6>0x<3x>3
Commented by Rio Michael last updated on 12/Jul/19
does it also apply to x^2 +∣7x∣+10=0?
doesitalsoapplytox2+7x+10=0?
Commented by MJS last updated on 12/Jul/19
x^2 +∣7x∣+10=0  x^2 +7∣x∣+10=0  case 1 x<0 ⇒ ∣x∣=−x  x^2 −7x+10=0 ⇒ x=2∨x=5 but x<0 ⇒ no solution  case 2 x≥0 ⇒ ∣x∣=x  x^2 +7x+10=0 ⇒ x=−2∨x=−5 but x≥0 ⇒ no solution  the absolute minimum of x^2 +7∣x∣+10 is 10
x2+7x+10=0x2+7x+10=0case1x<0x∣=xx27x+10=0x=2x=5butx<0nosolutioncase2x0x∣=xx2+7x+10=0x=2x=5butx0nosolutiontheabsoluteminimumofx2+7x+10is10
Commented by MJS last updated on 12/Jul/19
we might get complex solutions  x=a+bi  leads to  (a+bi)^2 +7∣a+bi∣+10=0  a^2 −b^2 +7(√(a^2 +b^2 ))+10+2abi=0  ⇒ a^2 −b^2 +7(√(a^2 +b^2 ))+10=0∧2abi=0  2abi=0 ⇒ a=0∨b=0  a=0  −b^2 +7∣b∣+10=0 ⇒ again 2 cases ⇒  ⇒ b=−(7/2)−((√(89))/2)∨b=(7/2)+((√(89))/2)  ⇒ x=±((7/2)+((√(89))/2))i    b=0 leads to the above equation only with  a instead of x ⇒ no real solutions
wemightgetcomplexsolutionsx=a+bileadsto(a+bi)2+7a+bi+10=0a2b2+7a2+b2+10+2abi=0a2b2+7a2+b2+10=02abi=02abi=0a=0b=0a=0b2+7b+10=0again2casesb=72892b=72+892x=±(72+892)ib=0leadstotheaboveequationonlywithainsteadofxnorealsolutions
Commented by Rio Michael last updated on 12/Jul/19
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *