Menu Close

how-do-i-expand-p-q-r-3-i-need-general-principle-




Question Number 122208 by harckinwunmy last updated on 14/Nov/20
how do i expand   (p+q+r)^3 ?  i need general principle.
howdoiexpand(p+q+r)3?ineedgeneralprinciple.
Commented by liberty last updated on 14/Nov/20
⇒(p+q+r)^3  = Σ_(k = 0) ^3  ((3),(k) ) p^(3−k) .(q+r)^k    = Σ_(k=0) ^3  ((3),(k) ) p^(3−k)  [ Σ_(ℓ=0) ^k  ((k),(ℓ) ) q^(k−ℓ) .r^ℓ  ]
(p+q+r)3=3k=0(3k)p3k.(q+r)k=3k=0(3k)p3k[k=0(k)qk.r]
Commented by liberty last updated on 15/Nov/20
k=0⇒ p^3   k=1⇒3p^2 (Σ_(ℓ=0) ^1  ((1),(ℓ) ) q^(1−ℓ) .r^ℓ  )=3p^2 (q+r)             = 3p^2 q+3p^2 r  k=2⇒3p (Σ_(ℓ=0) ^2  ((2),(ℓ) ) q^(2−ℓ) .r^ℓ )=3p(q^2 +2qr+r^2 )             = 3pq^2 +6pqr+3pr^2   k=3⇒1.(Σ_(ℓ=0) ^3  ((3),(ℓ) ) q^(3−ℓ) .r^ℓ  )=q^3 +3q^2 r+3qr^2 +r^3   therefore we get   (p+q+r)^3  = p^3 +3p^2 q+3p^2 r+3pq^2 +6pqr+3pr^2      + q^3 +3q^2 r+3qr^2 +r^3 .
k=0p3k=13p2(1=0(1)q1.r)=3p2(q+r)=3p2q+3p2rk=23p(2=0(2)q2.r)=3p(q2+2qr+r2)=3pq2+6pqr+3pr2k=31.(3=0(3)q3.r)=q3+3q2r+3qr2+r3thereforeweget(p+q+r)3=p3+3p2q+3p2r+3pq2+6pqr+3pr2+q3+3q2r+3qr2+r3.
Answered by mathmax by abdo last updated on 15/Nov/20
(p+q+r)^3 =(p+q+r)^2 (p+q+r)  =(p^2  +q^2 +r^2  +2pq +2pr +2qr)(p+q+r)  =p^3  +p^2 q+p^2 r +q^2 p+q^3  +q^2 r +r^2 p+r^2 q +r^3  ++2p^2 q+2pq^2  +2pqr  +2p^2 r +2prq +2pr^2  +2qrp +2q^2 r +2qr^2  =....
(p+q+r)3=(p+q+r)2(p+q+r)=(p2+q2+r2+2pq+2pr+2qr)(p+q+r)=p3+p2q+p2r+q2p+q3+q2r+r2p+r2q+r3++2p2q+2pq2+2pqr+2p2r+2prq+2pr2+2qrp+2q2r+2qr2=.
Answered by $@y@m last updated on 15/Nov/20
Step (i) Put  p+q=a  Step (ii) Expand (a+r)^3   Step (iii) Put a= p+q and simplify.
Step(i)Putp+q=aStep(ii)Expand(a+r)3Step(iii)Puta=p+qandsimplify.

Leave a Reply

Your email address will not be published. Required fields are marked *