Menu Close

how-do-i-prove-this-using-and-please-help-lim-x-y-2-1-x-2-y-4-




Question Number 189870 by uchihayahia last updated on 23/Mar/23
   how do i prove this using ε and δ   please help  lim_(x,y→(2,1))  x^2 y=4
howdoiprovethisusingϵandδpleasehelplimx,y(2,1)x2y=4
Answered by mehdee42 last updated on 23/Mar/23
we have to show :  ∀ε>0 ∃ δ>0  ; ∥(x,y)−(2,1)∥<δ⇒∣x^2 y−4∣<ε  if δ_1 =1 ⇒ 2<x<3 , 1<y<2  ∣x^2 y−4∣=∣xy(x−2)+2x(y−1)+2(x−2)∣−≤∣xy∣∣x−2∣+2∣x∣∣y−1∣+2∣x−2∣≤8∣x−2∣+6∣y−1∣≤  8(√((x−2)^2 +(y−1)^2 ))+6(√((x−2)^2 +(y−1)^2 ))=14∥(x,y)−(2,1)∥<ε⇒δ_2 =(1/(14))ε  ⇒δ=min{δ_1 ,δ_2 }
wehavetoshow:ϵ>0δ>0;(x,y)(2,1)∥<δ⇒∣x2y4∣<ϵifδ1=12<x<3,1<y<2x2y4∣=∣xy(x2)+2x(y1)+2(x2)⩽∣xy∣∣x2+2x∣∣y1+2x2∣⩽8x2+6y1∣⩽8(x2)2+(y1)2+6(x2)2+(y1)2=14(x,y)(2,1)∥<ϵδ2=114ϵδ=min{δ1,δ2}
Commented by uchihayahia last updated on 23/Mar/23
thank you, why ∣xy∣ became 8?
thankyou,whyxybecame8?
Commented by mehdee42 last updated on 23/Mar/23
∣x∣<3&∣y∣<2⇒∣x∣∣y∣∣x−2∣<6∣x−2∣  ⇒∣x∣y∣∣x−2∣+...+2∣x−2∣<6∣x−2∣+...+2∣x−2∣=8∣x−2∣+...
x∣<3&y∣<2⇒∣x∣∣y∣∣x2∣<6x2⇒∣xy∣∣x2++2x2∣<6x2++2x2∣=8x2+

Leave a Reply

Your email address will not be published. Required fields are marked *