Menu Close

How-do-you-express-this-question-in-partial-fraction-5x-2-x-6-3-2x-x-2-4-hence-obtain-the-expansion-is-ascending-powers-of-x-up-to-and-including-the-term-x-2-




Question Number 118381 by bramlexs22 last updated on 17/Oct/20
How do you express this question  in partial fraction ((5x^2 +x+6)/((3−2x)(x^2 +4)))   hence obtain the expansion  is ascending powers of x up  to and including the term x^2
Howdoyouexpressthisquestioninpartialfraction5x2+x+6(32x)(x2+4)henceobtaintheexpansionisascendingpowersofxuptoandincludingthetermx2
Commented by bramlexs22 last updated on 17/Oct/20
thank you all sir
thankyouallsir
Answered by benjo_mathlover last updated on 17/Oct/20
Partial fraction ((5x^2 +x+6)/((3−2x)(x^2 +4)))  let ((5x^2 +x+6)/((3−2x)(x^2 +4))) = (p/(3−2x)) + ((h(x))/(x^2 +4))  Then p = [ ((5x^2 +x+6)/(x^2 +4)) ]_(x=(3/2)) = ((5((3/2))^2 +(3/2)+6)/(((3/2))^2 +4)) = 3  Hence ((5x^2 +x+6)/((3−2x)(x^2 +4))) = (3/(3−2x)) + ((h(x))/(x^2 +4))                                                     = ((3(x^2 +4)+(3−2x)h(x))/((3−2x)(x^2 +4)))  h(x) = ((2x^2 +x−6)/(3−2x)) = −x−2  ∴ ((5x^2 +x+6)/((3−2x)(x^2 +4))) = (3/(3−2x)) − ((x+2)/(x^2 +4))
Partialfraction5x2+x+6(32x)(x2+4)let5x2+x+6(32x)(x2+4)=p32x+h(x)x2+4Thenp=[5x2+x+6x2+4]x=32=5(32)2+32+6(32)2+4=3Hence5x2+x+6(32x)(x2+4)=332x+h(x)x2+4=3(x2+4)+(32x)h(x)(32x)(x2+4)h(x)=2x2+x632x=x25x2+x+6(32x)(x2+4)=332xx+2x2+4
Commented by Bird last updated on 17/Oct/20
correct
correct
Answered by 1549442205PVT last updated on 17/Oct/20
 ((5x^2 +x+6)/((3−2x)(x^2 +4))) =(a/(3−2x))+((bx+c)/(x^2 +4))  ⇔5x^2 +x+6=(a−2b)x^2 +(3b−2c)x+4a+3c  ⇔ { ((a−2b=5)),((3b−2c=1)),((4a+3c=6)) :}⇔ { ((a=2b+5)),((3b−2c=1)),((8b+3c=−14)) :}  ⇒((8(1+2c)/3)+3c=−14  ⇔8+16c+9c=−42⇒25c=−50⇒c=−2  b=−1,a=1.From that we get   ((5x^2 +x+6)/((3−2x)(x^2 +4))) =(3/(3−2x))−((x+2)/(x^2 +4))
5x2+x+6(32x)(x2+4)=a32x+bx+cx2+45x2+x+6=(a2b)x2+(3b2c)x+4a+3c{a2b=53b2c=14a+3c=6{a=2b+53b2c=18b+3c=148(1+2c3+3c=148+16c+9c=4225c=50c=2b=1,a=1.Fromthatweget5x2+x+6(32x)(x2+4)=332xx+2x2+4
Commented by benjo_mathlover last updated on 17/Oct/20
i think your answer not correct sir. please  check
ithinkyouranswernotcorrectsir.pleasecheck
Commented by 1549442205PVT last updated on 17/Oct/20
Thank sir,i mistaked a=2b+5=2(−1)  +5=3 is correct as your
Thanksir,imistakeda=2b+5=2(1)+5=3iscorrectasyour
Answered by Bird last updated on 17/Oct/20
let F(x)=((5x^2 +x+6)/((3−2x)(x^2 +4))) ⇒  F(x)=−((5x^2 +x+6)/((2x−3)(x^2 +4)))  =(a/(2x−3)) +((bx+c)/(x^2 +4))  a=−((5((3/2))^2 +(3/2)+6)/(((3/2))^2 +4))  =−((((45)/4)+(3/2)+6)/((9/4)+4)) =−((45+6+24)/(9+16))  =−((75)/(25))=−3  lim_(x→+∞) xF(x)=−(5/2)=(a/2)+b ⇒  −5=a+2b ⇒2b−3=−5 ⇒  2b=−2 ⇒b=−1  F(0)=((−6)/(−12))=(1/2)=−(a/3)+(c/4)  =1+(c/4) ⇒2=4+c ⇒c=−2 ⇒  F(x)=((−3)/(2x−3))+((−x−2)/(x^2 +4))  =(3/(3−2x))−((x+2)/(x^2 +4))
letF(x)=5x2+x+6(32x)(x2+4)F(x)=5x2+x+6(2x3)(x2+4)=a2x3+bx+cx2+4a=5(32)2+32+6(32)2+4=454+32+694+4=45+6+249+16=7525=3limx+xF(x)=52=a2+b5=a+2b2b3=52b=2b=1F(0)=612=12=a3+c4=1+c42=4+cc=2F(x)=32x3+x2x2+4=332xx+2x2+4

Leave a Reply

Your email address will not be published. Required fields are marked *