Menu Close

How-do-you-make-a-curve-y-ax-3-bx-2-cx-d-with-a-critical-point-of-1-0-and-2-27-




Question Number 187053 by horsebrand11 last updated on 13/Feb/23
 How do you make a curve    y=ax^3 +bx^2 +cx+d with a critical   point of (1,0) and (−2,27) ?
Howdoyoumakeacurvey=ax3+bx2+cx+dwithacriticalpointof(1,0)and(2,27)?
Answered by cortano12 last updated on 13/Feb/23
 ⇒3ax^2 +2bx+c = k(x−1)(x+2)  ⇒3ax^2 +2bx+c = kx^2 +kx−2k  ⇒ { ((k=3a=2b ; b=(3/2)a)),((c=−2k=−6a)) :}  ∵ y=ax^3 +(3/2)ax^2 −6ax+d   ⇒−(7/2)a+d=0⇒d=(7/2)a  ⇒10a+d=27 ⇒((27)/2)a=27 ; a=2    { ((d=7)),((c=−12)),((b=3)) :} ⇒y=2x^3 +3x^2 −12x+7
3ax2+2bx+c=k(x1)(x+2)3ax2+2bx+c=kx2+kx2k{k=3a=2b;b=32ac=2k=6ay=ax3+32ax26ax+d72a+d=0d=72a10a+d=27272a=27;a=2{d=7c=12b=3y=2x3+3x212x+7

Leave a Reply

Your email address will not be published. Required fields are marked *