Menu Close

How-do-you-make-a-curve-y-ax-3-bx-2-cx-d-with-a-critical-point-of-1-0-and-2-27-




Question Number 187053 by horsebrand11 last updated on 13/Feb/23
 How do you make a curve    y=ax^3 +bx^2 +cx+d with a critical   point of (1,0) and (−2,27) ?
$$\:{How}\:{do}\:{you}\:{make}\:{a}\:{curve}\: \\ $$$$\:{y}={ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}\:{with}\:{a}\:{critical} \\ $$$$\:{point}\:{of}\:\left(\mathrm{1},\mathrm{0}\right)\:{and}\:\left(−\mathrm{2},\mathrm{27}\right)\:? \\ $$
Answered by cortano12 last updated on 13/Feb/23
 ⇒3ax^2 +2bx+c = k(x−1)(x+2)  ⇒3ax^2 +2bx+c = kx^2 +kx−2k  ⇒ { ((k=3a=2b ; b=(3/2)a)),((c=−2k=−6a)) :}  ∵ y=ax^3 +(3/2)ax^2 −6ax+d   ⇒−(7/2)a+d=0⇒d=(7/2)a  ⇒10a+d=27 ⇒((27)/2)a=27 ; a=2    { ((d=7)),((c=−12)),((b=3)) :} ⇒y=2x^3 +3x^2 −12x+7
$$\:\Rightarrow\mathrm{3}{ax}^{\mathrm{2}} +\mathrm{2}{bx}+{c}\:=\:{k}\left({x}−\mathrm{1}\right)\left({x}+\mathrm{2}\right) \\ $$$$\Rightarrow\mathrm{3}{ax}^{\mathrm{2}} +\mathrm{2}{bx}+{c}\:=\:{kx}^{\mathrm{2}} +{kx}−\mathrm{2}{k} \\ $$$$\Rightarrow\begin{cases}{{k}=\mathrm{3}{a}=\mathrm{2}{b}\:;\:{b}=\frac{\mathrm{3}}{\mathrm{2}}{a}}\\{{c}=−\mathrm{2}{k}=−\mathrm{6}{a}}\end{cases} \\ $$$$\because\:{y}={ax}^{\mathrm{3}} +\frac{\mathrm{3}}{\mathrm{2}}{ax}^{\mathrm{2}} −\mathrm{6}{ax}+{d} \\ $$$$\:\Rightarrow−\frac{\mathrm{7}}{\mathrm{2}}{a}+{d}=\mathrm{0}\Rightarrow{d}=\frac{\mathrm{7}}{\mathrm{2}}{a} \\ $$$$\Rightarrow\mathrm{10}{a}+{d}=\mathrm{27}\:\Rightarrow\frac{\mathrm{27}}{\mathrm{2}}{a}=\mathrm{27}\:;\:{a}=\mathrm{2} \\ $$$$\:\begin{cases}{{d}=\mathrm{7}}\\{{c}=−\mathrm{12}}\\{{b}=\mathrm{3}}\end{cases}\:\Rightarrow{y}=\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{7}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *