Menu Close

how-do-you-write-the-parametric-equation-of-a-plan-in-space-it-is-given-3-points-A-x-A-y-A-z-A-B-x-B-y-B-z-B-and-C-x-C-y-C-z-C-




Question Number 180062 by Matica last updated on 06/Nov/22
how do you write the parametric equation of a plan in space? it is given 3 points   A(x_A ,y_A ,z_A ) ; B(x_B ,y_B ,z_B ) and C(x_C ,y_C ,z_C ).
howdoyouwritetheparametricequationofaplaninspace?itisgiven3pointsA(xA,yA,zA);B(xB,yB,zB)andC(xC,yC,zC).
Answered by hmr last updated on 07/Nov/22
  Finding the parametric form of a plane  is similar to the parametric form of a line.    For line, we need an initial point  and a vector; but for plane, an initial  point and two vectors are needed.    We consider A(x_A , y_A , z_A ) as initial point.  Then we use B & C to write vectors AB^(→)  & AC^(→) .  AB^(→)  = <x_B  − x_A , y_B  − y_A , z_B  − z_A >  AC^(→)  = <x_C  − x_A , y_C  − y_A , z_C  − z_A >
Findingtheparametricformofaplaneissimilartotheparametricformofaline.Forline,weneedaninitialpointandavector;butforplane,aninitialpointandtwovectorsareneeded.WeconsiderA(xA,yA,zA)asinitialpoint.ThenweuseB&CtowritevectorsAB&AC.AB=<xBxA,yByA,zBzA>AC=<xCxA,yCyA,zCzA>
Commented by hmr last updated on 07/Nov/22
Commented by hmr last updated on 07/Nov/22
Commented by hmr last updated on 07/Nov/22
  Now consider another point on  the plane like D = (x, y, z).    Notice that the vector   AD^(→)  = <x − x_A , y − y_A , z − z_A >  is a linear combination of   vectors AB^(→)  & AC^(→) .    So we can write all points  of the plane like this:  AD^(→)  = t AB^(→)  + u AC^(→)   →  <x−x_A , y−y_A , z−z_A > = t <x_B −x_A , y_B −y_A , z_B −z_A > + u <x_C −x_A , y_C −y_A , z_C −z_A >  →   { ((x = x_A  + t(x_B −x_A ) + u(x_C −x_A ))),((y = y_(A ) + t(y_B −y_A ) + u(y_C −y_A ))),((z = z_A  + t(z_B −z_A ) + u(z_C −z_A ))) :}    Where t & u are the parameters.
NowconsideranotherpointontheplanelikeD=(x,y,z).NoticethatthevectorAD=<xxA,yyA,zzA>isalinearcombinationofvectorsAB&AC.Sowecanwriteallpointsoftheplanelikethis:AD=tAB+uAC<xxA,yyA,zzA>=t<xBxA,yByA,zBzA>+u<xCxA,yCyA,zCzA>{x=xA+t(xBxA)+u(xCxA)y=yA+t(yByA)+u(yCyA)z=zA+t(zBzA)+u(zCzA)Wheret&uaretheparameters.

Leave a Reply

Your email address will not be published. Required fields are marked *