Question Number 190907 by mustafazaheen last updated on 14/Apr/23
$$\mathrm{how}\:\mathrm{is}\:\mathrm{explanotory}\:\mathrm{solution} \\ $$$$\mathrm{4}^{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{2}} +\mathrm{4}^{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{7}} =\mathrm{4}^{\mathrm{2x}^{\mathrm{2}} +\mathrm{6x}+\mathrm{9}} +\mathrm{1} \\ $$$$\mathrm{x}=? \\ $$
Answered by Frix last updated on 14/Apr/23
$$\mathrm{4}^{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)} +\mathrm{4}^{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)+\mathrm{5}} =\mathrm{4}^{\mathrm{2}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)+\mathrm{5}} +\mathrm{1} \\ $$$${t}=\mathrm{4}^{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)} \\ $$$${t}+\mathrm{4}^{\mathrm{5}} {t}=\mathrm{4}^{\mathrm{5}} {t}^{\mathrm{2}} +\mathrm{1} \\ $$$${t}^{\mathrm{2}} −\frac{\mathrm{1025}{t}}{\mathrm{1024}}+\frac{\mathrm{1}}{\mathrm{1024}}=\mathrm{0} \\ $$$$\left({t}=\frac{\mathrm{1}}{\mathrm{1024}}\right)\vee{t}=\mathrm{1} \\ $$$${x}\in\mathbb{R}:\:{x}=−\mathrm{2}\vee{x}=−\mathrm{1} \\ $$$$\left({x}\notin\mathbb{R}:\:{x}=−\frac{\mathrm{3}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{19}}}{\mathrm{2}}\mathrm{i}\right) \\ $$