Menu Close

how-is-solution-lim-x-sinpi-sin-pi-2-sinx-




Question Number 190347 by mustafazaheen last updated on 01/Apr/23
how is solution  lim_(x→sinπ ) ((sin(π/2))/(sinx))=?
$${how}\:{is}\:{solution} \\ $$$$\underset{{x}\rightarrow\mathrm{sin}\pi\:} {\mathrm{lim}}\frac{\mathrm{sin}\frac{\pi}{\mathrm{2}}}{\mathrm{sin}{x}}=? \\ $$
Answered by JDamian last updated on 01/Apr/23
L=lim_(x→0)  (1/(sin x)) =  { ((+∞   x→0^+ )),((−∞  x→0^− )) :}  ∄L
$${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{sin}\:{x}}\:=\:\begin{cases}{+\infty\:\:\:{x}\rightarrow\mathrm{0}^{+} }\\{−\infty\:\:{x}\rightarrow\mathrm{0}^{−} }\end{cases} \\ $$$$\nexists\boldsymbol{{L}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *