Menu Close

how-is-the-solution-of-this-qution-x-x-1-x-2-x-3-1-when-determinant-x-50-determinant-




Question Number 175715 by zaheen last updated on 05/Sep/22
how is the solution of this qution    (√((x)(x+1)(x+2)(x+3)+1))  when      determinant (((x=50))) determinant ((),())
howisthesolutionofthisqution(x)(x+1)(x+2)(x+3)+1whenx=50
Commented by Frix last updated on 05/Sep/22
(x+n)(x+n+1)(x+n+2)(x+n+3)+1=  =(x^2 +(2n+3)x+n^2 +3n+1)^2
(x+n)(x+n+1)(x+n+2)(x+n+3)+1==(x2+(2n+3)x+n2+3n+1)2
Answered by ajfour last updated on 05/Sep/22
let  x=t−(3/2)  ⇒  x+3=t+(3/2)  f(t)=(√((t^2 −(9/4))(t^2 −(1/4))+1))  let    t^2 −(5/4)=s  f(s)=(√(s^2 −1+1))=s           =t^2 −(5/4)=(x+(3/2))^2 −(5/4)  f(50)=((103^2 −5)/4)=2651
letx=t32x+3=t+32f(t)=(t294)(t214)+1lett254=sf(s)=s21+1=s=t254=(x+32)254f(50)=103254=2651
Commented by Tawa11 last updated on 05/Sep/22
Great sir
Greatsir
Answered by behi834171 last updated on 05/Sep/22
x(x+3)=x^2 +3x  (x+1)(x+2)=x^2 +3x+2  x^2 +3x=t  ⇒f(t)=(√((t)(t+2)+1))=(√(t^2 +2t+1))=t+1  ⇒f(x)=x^2 +3x+1  ⇒f(x)=50^2 +3×50+1=2651 . ■
x(x+3)=x2+3x(x+1)(x+2)=x2+3x+2x2+3x=tf(t)=(t)(t+2)+1=t2+2t+1=t+1f(x)=x2+3x+1f(x)=502+3×50+1=2651.◼

Leave a Reply

Your email address will not be published. Required fields are marked *