Menu Close

How-many-5-digit-numbers-from-the-digits-0-1-9-have-i-Strictly-increasing-digits-ii-Strictly-increasing-or-decreasing-digits-iii-Increasing-digits-iv-Increasing-or-decreasing-digit




Question Number 171011 by mr W last updated on 06/Jun/22
How many 5-digit numbers from the  digits {0, 1, ....., 9} have?  (i) Strictly increasing digits  (ii) Strictly increasing or decreasing  digits  (iii) Increasing digits  (iv) Increasing or decreasing digits
Howmany5digitnumbersfromthedigits{0,1,..,9}have?(i)Strictlyincreasingdigits(ii)Strictlyincreasingordecreasingdigits(iii)Increasingdigits(iv)Increasingordecreasingdigits
Answered by aleks041103 last updated on 07/Jun/22
let:  • the first digit be a  • the second − a+b  • the 3rd − a+b+c  • the 4th − a+b+c+d  • the 5th − a+b+c+d+e  (i) ⇔ a+b+c+d+e≤9, a,...,e∈{1,...,9}  let x_1 =a−1,...,x_5 =e−1  ⇒Σ_(i=1) ^5 x_i ≤4  where x_i ∈{0,...,8}  let x_6 =4−Σ_(i=1) ^5 x_i ∈{0,...,4}  ⇒we′ve reduced the problem to  Σ_(i=1) ^6 x_i =4  this can be done in: C_4 ^(6+4−1) =C_4 ^9 =((9.8.7.6)/(1.2.3.4))=9.7.2=126  (ii) ... (iv) can ve done by analogy
let:thefirstdigitbeatheseconda+bthe3rda+b+cthe4tha+b+c+dthe5tha+b+c+d+e(i)a+b+c+d+e9,a,,e{1,,9}letx1=a1,,x5=e15i=1xi4wherexi{0,,8}letx6=45i=1xi{0,,4}wevereducedtheproblemto6i=1xi=4thiscanbedonein:C46+41=C49=9.8.7.61.2.3.4=9.7.2=126(ii)(iv)canvedonebyanalogy
Commented by mr W last updated on 08/Jun/22
thanks sir!
thankssir!
Answered by mr W last updated on 09/Jun/22
(a) Strictly increasing digits  numbers like 12568. each digit may  occur only one time. 0 can not be  used. so we can only select 5 from  9 digits.  C_5 ^9 =126.    (b) Strictly decreasing digits  numbers like 96540. each digit may  occur only one time. we can select   5 from 10 digits.  C_5 ^(10) =252.    (c) Increasing digits  numbers like 12248. each digit may  occur more times. 0 can not be used.  (1+x+x^2 +...)^9 =(1/((1−x)^9 ))=Σ_(k=0) ^∞ C_8 ^(k+8) x^k   coef. of x^5  is  C_8 ^(5+8) =1287.    (d) Decreasing digits  numbers like 85521. each digit may  occur more times.  (1+x+x^2 +...)^(10) =(1/((1−x)^(10) ))=Σ_(k=0) ^∞ C_9 ^(k+9) x^k   coef. of x^5  is  C_9 ^(5+9) =2002.  since 00000 is not a valid number,  so the answer is 2002−1=2001.
(a)Strictlyincreasingdigitsnumberslike12568.eachdigitmayoccuronlyonetime.0cannotbeused.sowecanonlyselect5from9digits.C59=126.(b)Strictlydecreasingdigitsnumberslike96540.eachdigitmayoccuronlyonetime.wecanselect5from10digits.C510=252.(c)Increasingdigitsnumberslike12248.eachdigitmayoccurmoretimes.0cannotbeused.(1+x+x2+)9=1(1x)9=k=0C8k+8xkcoef.ofx5isC85+8=1287.(d)Decreasingdigitsnumberslike85521.eachdigitmayoccurmoretimes.(1+x+x2+)10=1(1x)10=k=0C9k+9xkcoef.ofx5isC95+9=2002.since00000isnotavalidnumber,sotheansweris20021=2001.

Leave a Reply

Your email address will not be published. Required fields are marked *