Question Number 178395 by mr W last updated on 16/Oct/22
$${How}\:{many}\:\mathrm{5}\:{digit}\:{numbers}\:{with} \\ $$$${different}\:{digits}\:{are}\:{multiple}\:{of}\:\mathrm{9}? \\ $$
Answered by cortano1 last updated on 16/Oct/22
$$\left(\mathrm{1}\right)\mathrm{1}+\mathrm{5}+\mathrm{6}+\mathrm{7}+\mathrm{8}\Rightarrow\mathrm{5}! \\ $$$$\left(\mathrm{2}\right)\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{8}\Rightarrow\mathrm{5}! \\ $$$$\left(\mathrm{3}\right)\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{5}+\mathrm{6}\Rightarrow\mathrm{5}! \\ $$$$\left(\mathrm{4}\right)\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{5}+\mathrm{7}\Rightarrow\mathrm{5}! \\ $$$$\left(\mathrm{5}\right)\mathrm{1}+\mathrm{3}+\mathrm{6}+\mathrm{8}+\mathrm{9}\Rightarrow\mathrm{5}! \\ $$$$\left(\mathrm{6}\right)\mathrm{1}+\mathrm{4}+\mathrm{5}+\mathrm{8}+\mathrm{9}\Rightarrow\mathrm{5}! \\ $$$$\left(\mathrm{7}\right)\mathrm{1}+\mathrm{2}+\mathrm{7}+\mathrm{8}+\mathrm{9}\Rightarrow\mathrm{5}! \\ $$$$\left(\mathrm{8}\right)\mathrm{2}+\mathrm{3}+\mathrm{5}+\mathrm{8}+\mathrm{9}\Rightarrow\mathrm{5}! \\ $$$$\Rightarrow\mathrm{8}×\mathrm{5}!=\mathrm{8}×\mathrm{120}=\mathrm{960} \\ $$$$ \\ $$
Commented by mr W last updated on 16/Oct/22
$${what}\:{about}\:{numbers}\:{like}\:\mathrm{13068},\:\mathrm{47981}\: \\ $$$${etc}.? \\ $$
Commented by Tawa11 last updated on 16/Oct/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 16/Oct/22
$${i}\:{meant}\:{in}\:{his}\:{solution}\:{numbers}\:{like} \\ $$$$\mathrm{13068},\:\mathrm{47981}\:{etc}.\:{are}\:{not}\:{included}. \\ $$
Commented by mr W last updated on 16/Oct/22
$${so}\:{answer}\:\mathrm{960}\:{is}\:{not}\:{correct}. \\ $$
Commented by cortano1 last updated on 16/Oct/22
$$\mathrm{do}\:\mathrm{you}\:\mathrm{meant}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{is} \\ $$$$\mathrm{formed}\:\mathrm{from}\:\mathrm{0},\mathrm{1},…,\mathrm{9}? \\ $$
Commented by mr W last updated on 16/Oct/22
$${yes}.\:{all}\:{digits}\:{are}\:{allowed}. \\ $$
Commented by cortano1 last updated on 16/Oct/22
$$\mathrm{ok}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 16/Oct/22
$${typo}.\:{it}'{s}\:{just}\:{an}\:{example}. \\ $$
Commented by cortano1 last updated on 16/Oct/22
$$\mathrm{what}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{sir}? \\ $$
Commented by mr W last updated on 16/Oct/22
$${i}\:{got}\:\mathrm{3024}. \\ $$
Answered by mr W last updated on 16/Oct/22
$$\mathrm{0}+\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}=\mathrm{10} \\ $$$$\mathrm{9}+\mathrm{8}+\mathrm{7}+\mathrm{6}+\mathrm{5}=\mathrm{35} \\ $$$${that}\:{means}\:{the}\:{sum}\:{of}\:\mathrm{5}\:{different} \\ $$$${digits}\:{lies}\:{between}\:\mathrm{10}\:{and}\:\mathrm{35}.\: \\ $$$${such}\:{that}\:{a}\:\mathrm{5}\:{digit}\:{number}\:{is}\: \\ $$$${multiple}\:{of}\:\mathrm{9},\:{the}\:{sum}\:{of}\:{its}\:{digits}\: \\ $$$${must}\:{be}\:\mathrm{27}\:{or}\:\mathrm{18}. \\ $$$$ \\ $$$$\boldsymbol{{case}}\:\mathrm{1}:\:\boldsymbol{{sum}}\:\boldsymbol{{of}}\:\boldsymbol{{digits}}=\mathrm{27} \\ $$$$\mathrm{9}+\mathrm{8}+\mathrm{7}+\mathrm{3}+\mathrm{0}\:\Rightarrow\frac{\mathrm{4}}{\mathrm{5}}×\mathrm{5}!\:{numbers} \\ $$$$\mathrm{9}+\mathrm{8}+\mathrm{6}+\mathrm{4}+\mathrm{0} \\ $$$$\mathrm{9}+\mathrm{7}+\mathrm{6}+\mathrm{5}+\mathrm{0} \\ $$$$\mathrm{9}+\mathrm{8}+\mathrm{7}+\mathrm{2}+\mathrm{1}\:\Rightarrow\mathrm{5}!\:{numbers} \\ $$$$\mathrm{9}+\mathrm{8}+\mathrm{6}+\mathrm{3}+\mathrm{1} \\ $$$$\mathrm{9}+\mathrm{8}+\mathrm{5}+\mathrm{4}+\mathrm{1} \\ $$$$\mathrm{9}+\mathrm{8}+\mathrm{5}+\mathrm{3}+\mathrm{2} \\ $$$$\mathrm{9}+\mathrm{7}+\mathrm{6}+\mathrm{4}+\mathrm{1} \\ $$$$\mathrm{9}+\mathrm{7}+\mathrm{6}+\mathrm{3}+\mathrm{2} \\ $$$$\mathrm{9}+\mathrm{7}+\mathrm{5}+\mathrm{4}+\mathrm{2} \\ $$$$\mathrm{9}+\mathrm{6}+\mathrm{5}+\mathrm{4}+\mathrm{3} \\ $$$$\mathrm{8}+\mathrm{7}+\mathrm{6}+\mathrm{5}+\mathrm{1} \\ $$$$\mathrm{8}+\mathrm{7}+\mathrm{6}+\mathrm{4}+\mathrm{2} \\ $$$$\mathrm{8}+\mathrm{7}+\mathrm{5}+\mathrm{4}+\mathrm{3}\: \\ $$$$\Rightarrow\mathrm{3}×\frac{\mathrm{4}}{\mathrm{5}}×\mathrm{5}!+\mathrm{11}×\mathrm{5}! \\ $$$$ \\ $$$$\boldsymbol{{case}}\:\mathrm{2}:\:\boldsymbol{{sum}}\:\boldsymbol{{of}}\:\boldsymbol{{digits}}=\mathrm{18} \\ $$$$\mathrm{9}+\mathrm{6}+\mathrm{2}+\mathrm{1}+\mathrm{0}\:\Rightarrow\frac{\mathrm{4}}{\mathrm{5}}×\mathrm{5}!\:{numbers} \\ $$$$\mathrm{9}+\mathrm{5}+\mathrm{3}+\mathrm{1}+\mathrm{0} \\ $$$$\mathrm{9}+\mathrm{4}+\mathrm{3}+\mathrm{2}+\mathrm{0} \\ $$$$\mathrm{8}+\mathrm{7}+\mathrm{2}+\mathrm{1}+\mathrm{0} \\ $$$$\mathrm{8}+\mathrm{6}+\mathrm{3}+\mathrm{1}+\mathrm{0} \\ $$$$\mathrm{8}+\mathrm{5}+\mathrm{4}+\mathrm{1}+\mathrm{0} \\ $$$$\mathrm{8}+\mathrm{5}+\mathrm{3}+\mathrm{2}+\mathrm{0} \\ $$$$\mathrm{7}+\mathrm{6}+\mathrm{4}+\mathrm{1}+\mathrm{0} \\ $$$$\mathrm{7}+\mathrm{6}+\mathrm{3}+\mathrm{2}+\mathrm{0} \\ $$$$\mathrm{7}+\mathrm{5}+\mathrm{4}+\mathrm{2}+\mathrm{0} \\ $$$$\mathrm{6}+\mathrm{5}+\mathrm{4}+\mathrm{3}+\mathrm{0} \\ $$$$\mathrm{8}+\mathrm{4}+\mathrm{3}+\mathrm{2}+\mathrm{1}\:\Rightarrow\mathrm{5}!\:{numbers} \\ $$$$\mathrm{7}+\mathrm{5}+\mathrm{3}+\mathrm{2}+\mathrm{1} \\ $$$$\mathrm{6}+\mathrm{5}+\mathrm{4}+\mathrm{2}+\mathrm{1} \\ $$$$\Rightarrow\mathrm{11}×\frac{\mathrm{4}}{\mathrm{5}}×\mathrm{5}!+\mathrm{3}×\mathrm{5}! \\ $$$$ \\ $$$$\boldsymbol{{totally}}: \\ $$$$\Rightarrow\left(\mathrm{11}+\mathrm{3}\right)\left(\mathrm{1}+\frac{\mathrm{4}}{\mathrm{5}}\right)×\mathrm{5}!=\mathrm{14}×\mathrm{9}×\mathrm{4}!=\mathrm{3024} \\ $$
Commented by SLVR last updated on 25/Oct/22
$${it}\:{is}\:{more}\:{clear}…{awesom}.{super} \\ $$