Menu Close

How-many-different-words-can-be-formed-with-the-same-letters-as-in-TINKUTARA-if-no-two-same-letters-are-next-to-each-other-




Question Number 107196 by mr W last updated on 09/Aug/20
How many different words can be  formed with the same letters as in  TINKUTARA if no two same letters  are next to each other.
$${How}\:{many}\:{different}\:{words}\:{can}\:{be} \\ $$$${formed}\:{with}\:{the}\:{same}\:{letters}\:{as}\:{in} \\ $$$${TINKUTARA}\:{if}\:{no}\:{two}\:{same}\:{letters} \\ $$$${are}\:{next}\:{to}\:{each}\:{other}. \\ $$
Commented by john santu last updated on 09/Aug/20
totally word = ((9!)/(2!.2!))  case(1)  □□□□− − − − − = 5!  −□□□□− − − −= 5!  − −□□□□− − − = 5!  − − −□□□□− − = 5!  − − − −□□□□−= 5!  − − − − −□□□□ = 5!  ___________________ +  = 2×6×5 !   note □□=AA & □□=TT  case(2)  □□−□□− − − −= 5!  □□− −□□− − − = 5!  □□− − −□□− −=5!  □□− − − −□□−=5!  □□− − − − −□□=5!  ________________  totall = 2×5×5!  case(3)  −□□−□□− − −=5! ⇒total=2×4×5!  case(4)  − −□□−□□− −=5!⇒total=2×3×5!  case(5)  − − −□□−□□−=5!⇒total=2×2×5!  therefore many different word   can be formed with the same  letters as in Tinkutara if no two  same letters are next to each  other = ((9!)/(2!.2!)) −  2×5!(6+5+4+3+2)  = ((9!)/(2!.2!))−40.5!
$$\mathrm{totally}\:\mathrm{word}\:=\:\frac{\mathrm{9}!}{\mathrm{2}!.\mathrm{2}!} \\ $$$$\mathrm{case}\left(\mathrm{1}\right) \\ $$$$\Box\Box\Box\Box−\:−\:−\:−\:−\:=\:\mathrm{5}! \\ $$$$−\Box\Box\Box\Box−\:−\:−\:−=\:\mathrm{5}! \\ $$$$−\:−\Box\Box\Box\Box−\:−\:−\:=\:\mathrm{5}! \\ $$$$−\:−\:−\Box\Box\Box\Box−\:−\:=\:\mathrm{5}! \\ $$$$−\:−\:−\:−\Box\Box\Box\Box−=\:\mathrm{5}! \\ $$$$−\:−\:−\:−\:−\Box\Box\Box\Box\:=\:\mathrm{5}! \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\:+ \\ $$$$=\:\mathrm{2}×\mathrm{6}×\mathrm{5}\:!\: \\ $$$$\mathrm{note}\:\Box\Box=\mathrm{AA}\:\&\:\Box\Box=\mathrm{TT} \\ $$$$\mathrm{case}\left(\mathrm{2}\right) \\ $$$$\Box\Box−\Box\Box−\:−\:−\:−=\:\mathrm{5}! \\ $$$$\Box\Box−\:−\Box\Box−\:−\:−\:=\:\mathrm{5}! \\ $$$$\Box\Box−\:−\:−\Box\Box−\:−=\mathrm{5}! \\ $$$$\Box\Box−\:−\:−\:−\Box\Box−=\mathrm{5}! \\ $$$$\Box\Box−\:−\:−\:−\:−\Box\Box=\mathrm{5}! \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\mathrm{totall}\:=\:\mathrm{2}×\mathrm{5}×\mathrm{5}! \\ $$$$\mathrm{case}\left(\mathrm{3}\right) \\ $$$$−\Box\Box−\Box\Box−\:−\:−=\mathrm{5}!\:\Rightarrow\mathrm{total}=\mathrm{2}×\mathrm{4}×\mathrm{5}! \\ $$$$\mathrm{case}\left(\mathrm{4}\right) \\ $$$$−\:−\Box\Box−\Box\Box−\:−=\mathrm{5}!\Rightarrow\mathrm{total}=\mathrm{2}×\mathrm{3}×\mathrm{5}! \\ $$$$\mathrm{case}\left(\mathrm{5}\right) \\ $$$$−\:−\:−\Box\Box−\Box\Box−=\mathrm{5}!\Rightarrow\mathrm{total}=\mathrm{2}×\mathrm{2}×\mathrm{5}! \\ $$$$\mathrm{therefore}\:\mathrm{many}\:\mathrm{different}\:\mathrm{word}\: \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{with}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{letters}\:\mathrm{as}\:\mathrm{in}\:\mathrm{Tinkutara}\:\mathrm{if}\:\mathrm{no}\:\mathrm{two} \\ $$$$\mathrm{same}\:\mathrm{letters}\:\mathrm{are}\:\mathrm{next}\:\mathrm{to}\:\mathrm{each} \\ $$$$\mathrm{other}\:=\:\frac{\mathrm{9}!}{\mathrm{2}!.\mathrm{2}!}\:− \\ $$$$\mathrm{2}×\mathrm{5}!\left(\mathrm{6}+\mathrm{5}+\mathrm{4}+\mathrm{3}+\mathrm{2}\right) \\ $$$$=\:\frac{\mathrm{9}!}{\mathrm{2}!.\mathrm{2}!}−\mathrm{40}.\mathrm{5}! \\ $$
Commented by mr W last updated on 09/Aug/20
i got 55440.
$${i}\:{got}\:\mathrm{55440}. \\ $$
Commented by mr W last updated on 09/Aug/20
but −□□−□−−□− is also not valid.
$${but}\:−\Box\Box−\Box−−\Box−\:{is}\:{also}\:{not}\:{valid}. \\ $$
Commented by bobhans last updated on 09/Aug/20
case(6)  □□□− □− − − −=5!⇒total=2×5×5!  case(7)  □□−−□−□−−=5!⇒total=2×3×5!  next...
$$\mathrm{case}\left(\mathrm{6}\right) \\ $$$$\Box\Box\Box−\:\Box−\:−\:−\:−=\mathrm{5}!\Rightarrow\mathrm{total}=\mathrm{2}×\mathrm{5}×\mathrm{5}! \\ $$$$\mathrm{case}\left(\mathrm{7}\right) \\ $$$$\Box\Box−−\Box−\Box−−=\mathrm{5}!\Rightarrow\mathrm{total}=\mathrm{2}×\mathrm{3}×\mathrm{5}! \\ $$$$\mathrm{next}… \\ $$
Commented by bobhans last updated on 09/Aug/20
what the formula?
$$\mathrm{what}\:\mathrm{the}\:\mathrm{formula}? \\ $$
Commented by mr W last updated on 09/Aug/20
C_2 ^8 ×((7!)/(2!))−C_2 ^7 ×6!=55440
$${C}_{\mathrm{2}} ^{\mathrm{8}} ×\frac{\mathrm{7}!}{\mathrm{2}!}−{C}_{\mathrm{2}} ^{\mathrm{7}} ×\mathrm{6}!=\mathrm{55440} \\ $$
Commented by bobhans last updated on 09/Aug/20
C_2 ^8 ×((7!)/(2!)) = ((8.7)/(2.1))×((7!)/(2!)) = ((8!.7)/(2!.2!)) why not same to  ((9!)/(2!.2!)) ? Tinkutara = 9 object  where→ { ((A=2)),((T=2)) :} ?
$$\mathrm{C}_{\mathrm{2}} ^{\mathrm{8}} ×\frac{\mathrm{7}!}{\mathrm{2}!}\:=\:\frac{\mathrm{8}.\mathrm{7}}{\mathrm{2}.\mathrm{1}}×\frac{\mathrm{7}!}{\mathrm{2}!}\:=\:\frac{\mathrm{8}!.\mathrm{7}}{\mathrm{2}!.\mathrm{2}!}\:\mathrm{why}\:\mathrm{not}\:\mathrm{same}\:\mathrm{to} \\ $$$$\frac{\mathrm{9}!}{\mathrm{2}!.\mathrm{2}!}\:?\:\mathrm{Tinkutara}\:=\:\mathrm{9}\:\mathrm{object} \\ $$$$\mathrm{where}\rightarrow\begin{cases}{\mathrm{A}=\mathrm{2}}\\{\mathrm{T}=\mathrm{2}}\end{cases}\:?\: \\ $$
Commented by mr W last updated on 09/Aug/20
i used a different method to solve.
$${i}\:{used}\:{a}\:{different}\:{method}\:{to}\:{solve}. \\ $$
Answered by mr W last updated on 09/Aug/20
METHOD I  we have totally 9 letters, among them  two letters T and two letters A. both  Ts and As should not be next to each  other.    let′s consider at first that only the  two Ts should not be next to each  other. that means the two Ts must  be separated by at least one of the  other 7 letters:  □■□■□■□■□■□■□■□  wherein  ■ the 7 other letters   (AINKURA)  □ possible places for the two Ts  to select two places for Ts there are  C_2 ^8  ways and to arrange the 7 other  letters there are ((7!)/(2!)) ways, with 2!  because we have two same letters A.  so we can form C_2 ^8 ×((7!)/(2!)) words without  Ts next to each other.    in next step let′s see how many words  have both letters A next to each other.  we consider the two letters A as a  single letter, so we have only 6 other  letters instead of 7:  □■□■□■□■□■□■□  wherein  ■ the 6 other letters  (INKURA with A=AA as fixed unit)  □ possible places for the two Ts  to select two places for Ts there are  C_2 ^7  ways and to arrange the 6 other  letters there are 6! ways.  so we can form C_2 ^7 ×6! words without  Ts next to each other but with two As  next to each other.    number of words without Ts next to  each other and without As next to  each other is:  C_2 ^8 ×((7!)/(2!))−C_2 ^7 ×6!=55440
$$\boldsymbol{{METHOD}}\:\boldsymbol{{I}} \\ $$$${we}\:{have}\:{totally}\:\mathrm{9}\:{letters},\:{among}\:{them} \\ $$$${two}\:{letters}\:{T}\:{and}\:{two}\:{letters}\:{A}.\:{both} \\ $$$${Ts}\:{and}\:{As}\:{should}\:{not}\:{be}\:{next}\:{to}\:{each} \\ $$$${other}. \\ $$$$ \\ $$$${let}'{s}\:{consider}\:{at}\:{first}\:{that}\:{only}\:{the} \\ $$$${two}\:{Ts}\:{should}\:{not}\:{be}\:{next}\:{to}\:{each} \\ $$$${other}.\:{that}\:{means}\:{the}\:{two}\:{Ts}\:{must} \\ $$$${be}\:{separated}\:{by}\:{at}\:{least}\:{one}\:{of}\:{the} \\ $$$${other}\:\mathrm{7}\:{letters}: \\ $$$$\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box \\ $$$${wherein} \\ $$$$\blacksquare\:{the}\:\mathrm{7}\:{other}\:{letters}\: \\ $$$$\left({AINKURA}\right) \\ $$$$\Box\:{possible}\:{places}\:{for}\:{the}\:{two}\:{Ts} \\ $$$${to}\:{select}\:{two}\:{places}\:{for}\:{Ts}\:{there}\:{are} \\ $$$${C}_{\mathrm{2}} ^{\mathrm{8}} \:{ways}\:{and}\:{to}\:{arrange}\:{the}\:\mathrm{7}\:{other} \\ $$$${letters}\:{there}\:{are}\:\frac{\mathrm{7}!}{\mathrm{2}!}\:{ways},\:{with}\:\mathrm{2}! \\ $$$${because}\:{we}\:{have}\:{two}\:{same}\:{letters}\:{A}. \\ $$$${so}\:{we}\:{can}\:{form}\:{C}_{\mathrm{2}} ^{\mathrm{8}} ×\frac{\mathrm{7}!}{\mathrm{2}!}\:{words}\:{without} \\ $$$${Ts}\:{next}\:{to}\:{each}\:{other}. \\ $$$$ \\ $$$${in}\:{next}\:{step}\:{let}'{s}\:{see}\:{how}\:{many}\:{words} \\ $$$${have}\:{both}\:{letters}\:{A}\:{next}\:{to}\:{each}\:{other}. \\ $$$${we}\:{consider}\:{the}\:{two}\:{letters}\:{A}\:{as}\:{a} \\ $$$${single}\:{letter},\:{so}\:{we}\:{have}\:{only}\:\mathrm{6}\:{other} \\ $$$${letters}\:{instead}\:{of}\:\mathrm{7}: \\ $$$$\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box \\ $$$${wherein} \\ $$$$\blacksquare\:{the}\:\mathrm{6}\:{other}\:{letters} \\ $$$$\left(\mathrm{INKUR}\mathbb{A}\:{with}\:\mathbb{A}={AA}\:{as}\:{fixed}\:{unit}\right) \\ $$$$\Box\:{possible}\:{places}\:{for}\:{the}\:{two}\:{Ts} \\ $$$${to}\:{select}\:{two}\:{places}\:{for}\:{Ts}\:{there}\:{are} \\ $$$${C}_{\mathrm{2}} ^{\mathrm{7}} \:{ways}\:{and}\:{to}\:{arrange}\:{the}\:\mathrm{6}\:{other} \\ $$$${letters}\:{there}\:{are}\:\mathrm{6}!\:{ways}. \\ $$$${so}\:{we}\:{can}\:{form}\:{C}_{\mathrm{2}} ^{\mathrm{7}} ×\mathrm{6}!\:{words}\:{without} \\ $$$${Ts}\:{next}\:{to}\:{each}\:{other}\:{but}\:{with}\:{two}\:{As} \\ $$$${next}\:{to}\:{each}\:{other}. \\ $$$$ \\ $$$${number}\:{of}\:{words}\:{without}\:{Ts}\:{next}\:{to} \\ $$$${each}\:{other}\:{and}\:{without}\:{As}\:{next}\:{to} \\ $$$${each}\:{other}\:{is}: \\ $$$${C}_{\mathrm{2}} ^{\mathrm{8}} ×\frac{\mathrm{7}!}{\mathrm{2}!}−{C}_{\mathrm{2}} ^{\mathrm{7}} ×\mathrm{6}!=\mathrm{55440} \\ $$
Answered by mr W last updated on 09/Aug/20
METHOD II  total: ((9!)/(2!2!))    two A and two T together:  XXTTXXAAX  7!    two A or two T together:  XXAAXXTXT  XXTTXXAXA  2×(((8!)/(2!))−7!)    result:  ((9!)/(2!2!))−7!−2×(((8!)/(2!))−7!)  =((9!)/(2!2!))−8!+7!=55440
$$\boldsymbol{{METHOD}}\:\boldsymbol{{II}} \\ $$$${total}:\:\frac{\mathrm{9}!}{\mathrm{2}!\mathrm{2}!} \\ $$$$ \\ $$$${two}\:{A}\:\boldsymbol{{and}}\:{two}\:{T}\:{together}: \\ $$$${XXTTXXAAX} \\ $$$$\mathrm{7}! \\ $$$$ \\ $$$${two}\:{A}\:\boldsymbol{{or}}\:{two}\:{T}\:{together}: \\ $$$${XXAAXXTXT} \\ $$$${XXTTXXAXA} \\ $$$$\mathrm{2}×\left(\frac{\mathrm{8}!}{\mathrm{2}!}−\mathrm{7}!\right) \\ $$$$ \\ $$$${result}: \\ $$$$\frac{\mathrm{9}!}{\mathrm{2}!\mathrm{2}!}−\mathrm{7}!−\mathrm{2}×\left(\frac{\mathrm{8}!}{\mathrm{2}!}−\mathrm{7}!\right) \\ $$$$=\frac{\mathrm{9}!}{\mathrm{2}!\mathrm{2}!}−\mathrm{8}!+\mathrm{7}!=\mathrm{55440} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *