Question Number 107196 by mr W last updated on 09/Aug/20
$${How}\:{many}\:{different}\:{words}\:{can}\:{be} \\ $$$${formed}\:{with}\:{the}\:{same}\:{letters}\:{as}\:{in} \\ $$$${TINKUTARA}\:{if}\:{no}\:{two}\:{same}\:{letters} \\ $$$${are}\:{next}\:{to}\:{each}\:{other}. \\ $$
Commented by john santu last updated on 09/Aug/20
$$\mathrm{totally}\:\mathrm{word}\:=\:\frac{\mathrm{9}!}{\mathrm{2}!.\mathrm{2}!} \\ $$$$\mathrm{case}\left(\mathrm{1}\right) \\ $$$$\Box\Box\Box\Box−\:−\:−\:−\:−\:=\:\mathrm{5}! \\ $$$$−\Box\Box\Box\Box−\:−\:−\:−=\:\mathrm{5}! \\ $$$$−\:−\Box\Box\Box\Box−\:−\:−\:=\:\mathrm{5}! \\ $$$$−\:−\:−\Box\Box\Box\Box−\:−\:=\:\mathrm{5}! \\ $$$$−\:−\:−\:−\Box\Box\Box\Box−=\:\mathrm{5}! \\ $$$$−\:−\:−\:−\:−\Box\Box\Box\Box\:=\:\mathrm{5}! \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\:+ \\ $$$$=\:\mathrm{2}×\mathrm{6}×\mathrm{5}\:!\: \\ $$$$\mathrm{note}\:\Box\Box=\mathrm{AA}\:\&\:\Box\Box=\mathrm{TT} \\ $$$$\mathrm{case}\left(\mathrm{2}\right) \\ $$$$\Box\Box−\Box\Box−\:−\:−\:−=\:\mathrm{5}! \\ $$$$\Box\Box−\:−\Box\Box−\:−\:−\:=\:\mathrm{5}! \\ $$$$\Box\Box−\:−\:−\Box\Box−\:−=\mathrm{5}! \\ $$$$\Box\Box−\:−\:−\:−\Box\Box−=\mathrm{5}! \\ $$$$\Box\Box−\:−\:−\:−\:−\Box\Box=\mathrm{5}! \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\mathrm{totall}\:=\:\mathrm{2}×\mathrm{5}×\mathrm{5}! \\ $$$$\mathrm{case}\left(\mathrm{3}\right) \\ $$$$−\Box\Box−\Box\Box−\:−\:−=\mathrm{5}!\:\Rightarrow\mathrm{total}=\mathrm{2}×\mathrm{4}×\mathrm{5}! \\ $$$$\mathrm{case}\left(\mathrm{4}\right) \\ $$$$−\:−\Box\Box−\Box\Box−\:−=\mathrm{5}!\Rightarrow\mathrm{total}=\mathrm{2}×\mathrm{3}×\mathrm{5}! \\ $$$$\mathrm{case}\left(\mathrm{5}\right) \\ $$$$−\:−\:−\Box\Box−\Box\Box−=\mathrm{5}!\Rightarrow\mathrm{total}=\mathrm{2}×\mathrm{2}×\mathrm{5}! \\ $$$$\mathrm{therefore}\:\mathrm{many}\:\mathrm{different}\:\mathrm{word}\: \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{with}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{letters}\:\mathrm{as}\:\mathrm{in}\:\mathrm{Tinkutara}\:\mathrm{if}\:\mathrm{no}\:\mathrm{two} \\ $$$$\mathrm{same}\:\mathrm{letters}\:\mathrm{are}\:\mathrm{next}\:\mathrm{to}\:\mathrm{each} \\ $$$$\mathrm{other}\:=\:\frac{\mathrm{9}!}{\mathrm{2}!.\mathrm{2}!}\:− \\ $$$$\mathrm{2}×\mathrm{5}!\left(\mathrm{6}+\mathrm{5}+\mathrm{4}+\mathrm{3}+\mathrm{2}\right) \\ $$$$=\:\frac{\mathrm{9}!}{\mathrm{2}!.\mathrm{2}!}−\mathrm{40}.\mathrm{5}! \\ $$
Commented by mr W last updated on 09/Aug/20
$${i}\:{got}\:\mathrm{55440}. \\ $$
Commented by mr W last updated on 09/Aug/20
$${but}\:−\Box\Box−\Box−−\Box−\:{is}\:{also}\:{not}\:{valid}. \\ $$
Commented by bobhans last updated on 09/Aug/20
$$\mathrm{case}\left(\mathrm{6}\right) \\ $$$$\Box\Box\Box−\:\Box−\:−\:−\:−=\mathrm{5}!\Rightarrow\mathrm{total}=\mathrm{2}×\mathrm{5}×\mathrm{5}! \\ $$$$\mathrm{case}\left(\mathrm{7}\right) \\ $$$$\Box\Box−−\Box−\Box−−=\mathrm{5}!\Rightarrow\mathrm{total}=\mathrm{2}×\mathrm{3}×\mathrm{5}! \\ $$$$\mathrm{next}… \\ $$
Commented by bobhans last updated on 09/Aug/20
$$\mathrm{what}\:\mathrm{the}\:\mathrm{formula}? \\ $$
Commented by mr W last updated on 09/Aug/20
$${C}_{\mathrm{2}} ^{\mathrm{8}} ×\frac{\mathrm{7}!}{\mathrm{2}!}−{C}_{\mathrm{2}} ^{\mathrm{7}} ×\mathrm{6}!=\mathrm{55440} \\ $$
Commented by bobhans last updated on 09/Aug/20
$$\mathrm{C}_{\mathrm{2}} ^{\mathrm{8}} ×\frac{\mathrm{7}!}{\mathrm{2}!}\:=\:\frac{\mathrm{8}.\mathrm{7}}{\mathrm{2}.\mathrm{1}}×\frac{\mathrm{7}!}{\mathrm{2}!}\:=\:\frac{\mathrm{8}!.\mathrm{7}}{\mathrm{2}!.\mathrm{2}!}\:\mathrm{why}\:\mathrm{not}\:\mathrm{same}\:\mathrm{to} \\ $$$$\frac{\mathrm{9}!}{\mathrm{2}!.\mathrm{2}!}\:?\:\mathrm{Tinkutara}\:=\:\mathrm{9}\:\mathrm{object} \\ $$$$\mathrm{where}\rightarrow\begin{cases}{\mathrm{A}=\mathrm{2}}\\{\mathrm{T}=\mathrm{2}}\end{cases}\:?\: \\ $$
Commented by mr W last updated on 09/Aug/20
$${i}\:{used}\:{a}\:{different}\:{method}\:{to}\:{solve}. \\ $$
Answered by mr W last updated on 09/Aug/20
$$\boldsymbol{{METHOD}}\:\boldsymbol{{I}} \\ $$$${we}\:{have}\:{totally}\:\mathrm{9}\:{letters},\:{among}\:{them} \\ $$$${two}\:{letters}\:{T}\:{and}\:{two}\:{letters}\:{A}.\:{both} \\ $$$${Ts}\:{and}\:{As}\:{should}\:{not}\:{be}\:{next}\:{to}\:{each} \\ $$$${other}. \\ $$$$ \\ $$$${let}'{s}\:{consider}\:{at}\:{first}\:{that}\:{only}\:{the} \\ $$$${two}\:{Ts}\:{should}\:{not}\:{be}\:{next}\:{to}\:{each} \\ $$$${other}.\:{that}\:{means}\:{the}\:{two}\:{Ts}\:{must} \\ $$$${be}\:{separated}\:{by}\:{at}\:{least}\:{one}\:{of}\:{the} \\ $$$${other}\:\mathrm{7}\:{letters}: \\ $$$$\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box \\ $$$${wherein} \\ $$$$\blacksquare\:{the}\:\mathrm{7}\:{other}\:{letters}\: \\ $$$$\left({AINKURA}\right) \\ $$$$\Box\:{possible}\:{places}\:{for}\:{the}\:{two}\:{Ts} \\ $$$${to}\:{select}\:{two}\:{places}\:{for}\:{Ts}\:{there}\:{are} \\ $$$${C}_{\mathrm{2}} ^{\mathrm{8}} \:{ways}\:{and}\:{to}\:{arrange}\:{the}\:\mathrm{7}\:{other} \\ $$$${letters}\:{there}\:{are}\:\frac{\mathrm{7}!}{\mathrm{2}!}\:{ways},\:{with}\:\mathrm{2}! \\ $$$${because}\:{we}\:{have}\:{two}\:{same}\:{letters}\:{A}. \\ $$$${so}\:{we}\:{can}\:{form}\:{C}_{\mathrm{2}} ^{\mathrm{8}} ×\frac{\mathrm{7}!}{\mathrm{2}!}\:{words}\:{without} \\ $$$${Ts}\:{next}\:{to}\:{each}\:{other}. \\ $$$$ \\ $$$${in}\:{next}\:{step}\:{let}'{s}\:{see}\:{how}\:{many}\:{words} \\ $$$${have}\:{both}\:{letters}\:{A}\:{next}\:{to}\:{each}\:{other}. \\ $$$${we}\:{consider}\:{the}\:{two}\:{letters}\:{A}\:{as}\:{a} \\ $$$${single}\:{letter},\:{so}\:{we}\:{have}\:{only}\:\mathrm{6}\:{other} \\ $$$${letters}\:{instead}\:{of}\:\mathrm{7}: \\ $$$$\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box\blacksquare\Box \\ $$$${wherein} \\ $$$$\blacksquare\:{the}\:\mathrm{6}\:{other}\:{letters} \\ $$$$\left(\mathrm{INKUR}\mathbb{A}\:{with}\:\mathbb{A}={AA}\:{as}\:{fixed}\:{unit}\right) \\ $$$$\Box\:{possible}\:{places}\:{for}\:{the}\:{two}\:{Ts} \\ $$$${to}\:{select}\:{two}\:{places}\:{for}\:{Ts}\:{there}\:{are} \\ $$$${C}_{\mathrm{2}} ^{\mathrm{7}} \:{ways}\:{and}\:{to}\:{arrange}\:{the}\:\mathrm{6}\:{other} \\ $$$${letters}\:{there}\:{are}\:\mathrm{6}!\:{ways}. \\ $$$${so}\:{we}\:{can}\:{form}\:{C}_{\mathrm{2}} ^{\mathrm{7}} ×\mathrm{6}!\:{words}\:{without} \\ $$$${Ts}\:{next}\:{to}\:{each}\:{other}\:{but}\:{with}\:{two}\:{As} \\ $$$${next}\:{to}\:{each}\:{other}. \\ $$$$ \\ $$$${number}\:{of}\:{words}\:{without}\:{Ts}\:{next}\:{to} \\ $$$${each}\:{other}\:{and}\:{without}\:{As}\:{next}\:{to} \\ $$$${each}\:{other}\:{is}: \\ $$$${C}_{\mathrm{2}} ^{\mathrm{8}} ×\frac{\mathrm{7}!}{\mathrm{2}!}−{C}_{\mathrm{2}} ^{\mathrm{7}} ×\mathrm{6}!=\mathrm{55440} \\ $$
Answered by mr W last updated on 09/Aug/20
$$\boldsymbol{{METHOD}}\:\boldsymbol{{II}} \\ $$$${total}:\:\frac{\mathrm{9}!}{\mathrm{2}!\mathrm{2}!} \\ $$$$ \\ $$$${two}\:{A}\:\boldsymbol{{and}}\:{two}\:{T}\:{together}: \\ $$$${XXTTXXAAX} \\ $$$$\mathrm{7}! \\ $$$$ \\ $$$${two}\:{A}\:\boldsymbol{{or}}\:{two}\:{T}\:{together}: \\ $$$${XXAAXXTXT} \\ $$$${XXTTXXAXA} \\ $$$$\mathrm{2}×\left(\frac{\mathrm{8}!}{\mathrm{2}!}−\mathrm{7}!\right) \\ $$$$ \\ $$$${result}: \\ $$$$\frac{\mathrm{9}!}{\mathrm{2}!\mathrm{2}!}−\mathrm{7}!−\mathrm{2}×\left(\frac{\mathrm{8}!}{\mathrm{2}!}−\mathrm{7}!\right) \\ $$$$=\frac{\mathrm{9}!}{\mathrm{2}!\mathrm{2}!}−\mathrm{8}!+\mathrm{7}!=\mathrm{55440} \\ $$