Menu Close

How-many-digits-does-1000-1000-have-Mastermind-




Question Number 174928 by Mastermind last updated on 14/Aug/22
How many digits does 1000^(1000)  have?      Mastermind
$$\mathrm{How}\:\mathrm{many}\:\mathrm{digits}\:\mathrm{does}\:\mathrm{1000}^{\mathrm{1000}} \:\mathrm{have}? \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$
Answered by Ar Brandon last updated on 14/Aug/22
3001
$$\mathrm{3001} \\ $$
Commented by Mastermind last updated on 14/Aug/22
your solution pls
$$\mathrm{your}\:\mathrm{solution}\:\mathrm{pls} \\ $$
Answered by BaliramKumar last updated on 14/Aug/22
10^1  = 10(2 digits)  10^2  = 100(3 digits)  10^3  = 1000(4 digits)  .....................  1000^(1000)  = (10^3 )^(1000)  = 10^(3000)  (3001 digits)
$$\mathrm{10}^{\mathrm{1}} \:=\:\mathrm{10}\left(\mathrm{2}\:{digits}\right) \\ $$$$\mathrm{10}^{\mathrm{2}} \:=\:\mathrm{100}\left(\mathrm{3}\:{digits}\right) \\ $$$$\mathrm{10}^{\mathrm{3}} \:=\:\mathrm{1000}\left(\mathrm{4}\:{digits}\right) \\ $$$$………………… \\ $$$$\mathrm{1000}^{\mathrm{1000}} \:=\:\left(\mathrm{10}^{\mathrm{3}} \right)^{\mathrm{1000}} \:=\:\mathrm{10}^{\mathrm{3000}} \:\left(\mathrm{3001}\:{digits}\right) \\ $$
Commented by Frix last updated on 14/Aug/22
log 1000^(1000)  =1000log 1000 =3000  we have a “1” and 3000 “0”s ⇒ 3001 digits  easy.  but how many digits does n^n  with n∈N have?
$$\mathrm{log}\:\mathrm{1000}^{\mathrm{1000}} \:=\mathrm{1000log}\:\mathrm{1000}\:=\mathrm{3000} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{a}\:“\mathrm{1}''\:\mathrm{and}\:\mathrm{3000}\:“\mathrm{0}''\mathrm{s}\:\Rightarrow\:\mathrm{3001}\:\mathrm{digits} \\ $$$$\mathrm{easy}. \\ $$$$\mathrm{but}\:\mathrm{how}\:\mathrm{many}\:\mathrm{digits}\:\mathrm{does}\:{n}^{{n}} \:\mathrm{with}\:{n}\in\mathbb{N}\:\mathrm{have}? \\ $$
Commented by mr W last updated on 14/Aug/22
n^n  has ⌊nlog n⌋+1 digits
$${n}^{{n}} \:{has}\:\lfloor{n}\mathrm{log}\:{n}\rfloor+\mathrm{1}\:{digits} \\ $$
Commented by Ari last updated on 14/Aug/22
3^3 has 3ln3+1digits...oh..no
$$\mathrm{3}^{\mathrm{3}} {has}\:\mathrm{3}{ln}\mathrm{3}+\mathrm{1}{digits}…{oh}..{no} \\ $$
Commented by mr W last updated on 14/Aug/22
typo!  ⌊nlog n⌋+1
$${typo}! \\ $$$$\lfloor{n}\mathrm{log}\:{n}\rfloor+\mathrm{1} \\ $$
Commented by Ari last updated on 14/Aug/22
3^3 =27,has two digits  3log3+1≠2
$$\mathrm{3}^{\mathrm{3}} =\mathrm{27},{has}\:{two}\:{digits} \\ $$$$\mathrm{3}{log}\mathrm{3}+\mathrm{1}\neq\mathrm{2} \\ $$
Commented by Ari last updated on 14/Aug/22
perhaps rounded!
$${perhaps}\:{rounded}! \\ $$
Commented by Ari last updated on 14/Aug/22
take the graatest integer of [nlogn]+1
$${take}\:{the}\:{graatest}\:{integer}\:{of}\:\left[{nlogn}\right]+\mathrm{1} \\ $$
Commented by mr W last updated on 15/Aug/22
please try to understand it before  you say something is wrong!  i wrote clearly ⌊nlog n⌋+1.
$${please}\:{try}\:{to}\:{understand}\:{it}\:{before} \\ $$$${you}\:{say}\:{something}\:{is}\:{wrong}! \\ $$$${i}\:{wrote}\:{clearly}\:\lfloor{n}\mathrm{log}\:{n}\rfloor+\mathrm{1}. \\ $$
Commented by Ari last updated on 15/Aug/22
Ok!
$${Ok}! \\ $$
Answered by princeDera last updated on 14/Aug/22
  ⌊1000log  (1000)⌋ + 1 = 1000⌊3log (10)⌋ + 1 = 3000+1 = 3001
$$ \\ $$$$\lfloor\mathrm{1000log}\:\:\left(\mathrm{1000}\right)\rfloor\:+\:\mathrm{1}\:=\:\mathrm{1000}\lfloor\mathrm{3log}\:\left(\mathrm{10}\right)\rfloor\:+\:\mathrm{1}\:=\:\mathrm{3000}+\mathrm{1}\:=\:\mathrm{3001} \\ $$
Commented by Ari last updated on 14/Aug/22
wrong!
$${wrong}! \\ $$
Commented by princeDera last updated on 14/Aug/22
it was a mistake    log_(10)  and not log _e
$${it}\:{was}\:{a}\:{mistake} \\ $$$$ \\ $$$$\mathrm{log}_{\mathrm{10}} \:{and}\:{not}\:\mathrm{log}\:_{{e}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *