Menu Close

How-many-digits-doest-the-number-2021-2022-have-




Question Number 144609 by mathdanisur last updated on 26/Jun/21
How many digits doest the number  2021^(2022)   have.?
$${How}\:{many}\:{digits}\:{doest}\:{the}\:{number} \\ $$$$\mathrm{2021}^{\mathrm{2022}} \:\:{have}.? \\ $$
Answered by MJS_new last updated on 27/Jun/21
log_(10)  2021^(2022)  =2022log_(10)  2021 =  =2022log_(10)  (2.021×10^3 ) =2022(3+log_(10)  2.021)=  =6066+2022log_(10)  2.021 ≈6683.85508593≈  ≈7.16285117718×10^(6683)  which has 6684 digits
$$\mathrm{log}_{\mathrm{10}} \:\mathrm{2021}^{\mathrm{2022}} \:=\mathrm{2022log}_{\mathrm{10}} \:\mathrm{2021}\:= \\ $$$$=\mathrm{2022log}_{\mathrm{10}} \:\left(\mathrm{2}.\mathrm{021}×\mathrm{10}^{\mathrm{3}} \right)\:=\mathrm{2022}\left(\mathrm{3}+\mathrm{log}_{\mathrm{10}} \:\mathrm{2}.\mathrm{021}\right)= \\ $$$$=\mathrm{6066}+\mathrm{2022log}_{\mathrm{10}} \:\mathrm{2}.\mathrm{021}\:\approx\mathrm{6683}.\mathrm{85508593}\approx \\ $$$$\approx\mathrm{7}.\mathrm{16285117718}×\mathrm{10}^{\mathrm{6683}} \:\mathrm{which}\:\mathrm{has}\:\mathrm{6684}\:\mathrm{digits} \\ $$
Commented by mathdanisur last updated on 27/Jun/21
alot cool thanks Sir
$${alot}\:{cool}\:{thanks}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *