Menu Close

how-many-four-digit-numbers-can-be-formed-with-the-digits-0-1-2-3-4-5-6-7-8-9-




Question Number 117866 by aurpeyz last updated on 14/Oct/20
how many four digit numbers can be  formed with the digits 0 1 2 3 4 5 6 7 8  9?
$${how}\:{many}\:{four}\:{digit}\:{numbers}\:{can}\:{be} \\ $$$${formed}\:{with}\:{the}\:{digits}\:\mathrm{0}\:\mathrm{1}\:\mathrm{2}\:\mathrm{3}\:\mathrm{4}\:\mathrm{5}\:\mathrm{6}\:\mathrm{7}\:\mathrm{8} \\ $$$$\mathrm{9}? \\ $$
Commented by mr W last updated on 14/Oct/20
with repetition:  1000,1001,...,9999  ⇒9999−999=9000 numbers
$${with}\:{repetition}: \\ $$$$\mathrm{1000},\mathrm{1001},…,\mathrm{9999} \\ $$$$\Rightarrow\mathrm{9999}−\mathrm{999}=\mathrm{9000}\:{numbers} \\ $$
Commented by mhmoud last updated on 14/Oct/20
good
Commented by mr W last updated on 14/Oct/20
without repetition:  (9/(10))×P_4 ^(10) =4536 numbers  or  P_4 ^(10) −P_3 ^9 =4536 numbers
$${without}\:{repetition}: \\ $$$$\frac{\mathrm{9}}{\mathrm{10}}×{P}_{\mathrm{4}} ^{\mathrm{10}} =\mathrm{4536}\:{numbers} \\ $$$${or} \\ $$$${P}_{\mathrm{4}} ^{\mathrm{10}} −{P}_{\mathrm{3}} ^{\mathrm{9}} =\mathrm{4536}\:{numbers} \\ $$
Answered by 1549442205PVT last updated on 14/Oct/20
10^4 −∣0abc^(−) ∣=10^4 −10^3 =10000−1000  =9000
$$\mathrm{10}^{\mathrm{4}} −\mid\overline {\mathrm{0abc}}\mid=\mathrm{10}^{\mathrm{4}} −\mathrm{10}^{\mathrm{3}} =\mathrm{10000}−\mathrm{1000} \\ $$$$=\mathrm{9000} \\ $$
Answered by bobhans last updated on 14/Oct/20
9×10^3  =9,000
$$\mathrm{9}×\mathrm{10}^{\mathrm{3}} \:=\mathrm{9},\mathrm{000} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *