Menu Close

how-many-integer-a-b-z-a-5-b-5-10-b-1-2-9-




Question Number 174512 by ahdal last updated on 03/Aug/22
how many integer a,b∈z^+   a^5 −b^5 =10(b+1)^2 −9
$${how}\:{many}\:{integer}\:{a},{b}\in{z}^{+} \\ $$$${a}^{\mathrm{5}} −{b}^{\mathrm{5}} =\mathrm{10}\left({b}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{9} \\ $$$$ \\ $$
Answered by MJS_new last updated on 03/Aug/22
a^5 =b^5 +10b^2 +20b+1  b>0 ⇒ a>b ⇒ a=b+n∧n∈N^★   (b+n)^5 =b^5 +10b^2 +20b+1  5b^4 n+10b^3 n^2 +10b^2 n^3 +5bn^4 +n^5 =10b^2 +20b+1  since b≥1∧n≥1 it′s obvious that the lhs is  greater than the rhs for higher values of  both b or n. the only solution is  b=1∧n=1 ⇒ a=2
$${a}^{\mathrm{5}} ={b}^{\mathrm{5}} +\mathrm{10}{b}^{\mathrm{2}} +\mathrm{20}{b}+\mathrm{1} \\ $$$${b}>\mathrm{0}\:\Rightarrow\:{a}>{b}\:\Rightarrow\:{a}={b}+{n}\wedge{n}\in\mathbb{N}^{\bigstar} \\ $$$$\left({b}+{n}\right)^{\mathrm{5}} ={b}^{\mathrm{5}} +\mathrm{10}{b}^{\mathrm{2}} +\mathrm{20}{b}+\mathrm{1} \\ $$$$\mathrm{5}{b}^{\mathrm{4}} {n}+\mathrm{10}{b}^{\mathrm{3}} {n}^{\mathrm{2}} +\mathrm{10}{b}^{\mathrm{2}} {n}^{\mathrm{3}} +\mathrm{5}{bn}^{\mathrm{4}} +{n}^{\mathrm{5}} =\mathrm{10}{b}^{\mathrm{2}} +\mathrm{20}{b}+\mathrm{1} \\ $$$$\mathrm{since}\:{b}\geqslant\mathrm{1}\wedge{n}\geqslant\mathrm{1}\:\mathrm{it}'\mathrm{s}\:\mathrm{obvious}\:\mathrm{that}\:\mathrm{the}\:\mathrm{lhs}\:\mathrm{is} \\ $$$$\mathrm{greater}\:\mathrm{than}\:\mathrm{the}\:\mathrm{rhs}\:\mathrm{for}\:\mathrm{higher}\:\mathrm{values}\:\mathrm{of} \\ $$$$\mathrm{both}\:{b}\:\mathrm{or}\:{n}.\:\mathrm{the}\:\mathrm{only}\:\mathrm{solution}\:\mathrm{is} \\ $$$${b}=\mathrm{1}\wedge{n}=\mathrm{1}\:\Rightarrow\:{a}=\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *