Menu Close

How-many-n-digit-integers-are-divisible-by-9-




Question Number 118019 by prakash jain last updated on 14/Oct/20
How many n digit integers are  divisible by 9?
$$\mathrm{How}\:\mathrm{many}\:{n}\:\mathrm{digit}\:\mathrm{integers}\:\mathrm{are} \\ $$$$\mathrm{divisible}\:\mathrm{by}\:\mathrm{9}? \\ $$
Commented by prakash jain last updated on 14/Oct/20
d_1 d_2 ....d_n  is n digit number. where  d_1 ,d_2 ...,d_n  are digits.  Express result in terms of n.  example for n=2  18,27,36,45,54,63,72,81,90,99
$${d}_{\mathrm{1}} {d}_{\mathrm{2}} ….{d}_{{n}} \:\mathrm{is}\:{n}\:\mathrm{digit}\:\mathrm{number}.\:\mathrm{where} \\ $$$${d}_{\mathrm{1}} ,{d}_{\mathrm{2}} …,{d}_{{n}} \:\mathrm{are}\:\mathrm{digits}. \\ $$$$\mathrm{Express}\:\mathrm{result}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{n}. \\ $$$$\mathrm{example}\:\mathrm{for}\:{n}=\mathrm{2} \\ $$$$\mathrm{18},\mathrm{27},\mathrm{36},\mathrm{45},\mathrm{54},\mathrm{63},\mathrm{72},\mathrm{81},\mathrm{90},\mathrm{99} \\ $$
Commented by mr W last updated on 14/Oct/20
9 has only one digit. 99 is valid.
$$\mathrm{9}\:{has}\:{only}\:{one}\:{digit}.\:\mathrm{99}\:{is}\:{valid}. \\ $$
Commented by prakash jain last updated on 14/Oct/20
Yes. my mistake.
$$\mathrm{Yes}.\:\mathrm{my}\:\mathrm{mistake}.\: \\ $$
Answered by 1549442205PVT last updated on 14/Oct/20
It is infinite many because the condition  for a number divisible by 9 that is  the  sum of its digits  divisible by9  Example:9,18,108,1008,10008,...
$$\mathrm{It}\:\mathrm{is}\:\mathrm{infinite}\:\mathrm{many}\:\mathrm{because}\:\mathrm{the}\:\mathrm{condition} \\ $$$$\mathrm{for}\:\mathrm{a}\:\mathrm{number}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{9}\:\mathrm{that}\:\mathrm{is} \\ $$$$\mathrm{the}\:\:\mathrm{sum}\:\mathrm{of}\:\mathrm{its}\:\mathrm{digits}\:\:\mathrm{divisible}\:\mathrm{by9} \\ $$$$\mathrm{Example}:\mathrm{9},\mathrm{18},\mathrm{108},\mathrm{1008},\mathrm{10008},… \\ $$
Commented by prakash jain last updated on 14/Oct/20
Sorry about not being clear on question.  Added clarification on question
$$\mathrm{Sorry}\:\mathrm{about}\:\mathrm{not}\:\mathrm{being}\:\mathrm{clear}\:\mathrm{on}\:\mathrm{question}. \\ $$$$\mathrm{Added}\:\mathrm{clarification}\:\mathrm{on}\:\mathrm{question} \\ $$
Answered by mr W last updated on 14/Oct/20
it′s easier than one may think.  the first one is 10^(n−1) +8  the second one is 10^(n−1) +17  ...  the last one is 10^n −1    totally  (((10^n −1)−(10^(n−1) −1))/9)=10^(n−1)  numbers
$${it}'{s}\:{easier}\:{than}\:{one}\:{may}\:{think}. \\ $$$${the}\:{first}\:{one}\:{is}\:\mathrm{10}^{{n}−\mathrm{1}} +\mathrm{8} \\ $$$${the}\:{second}\:{one}\:{is}\:\mathrm{10}^{{n}−\mathrm{1}} +\mathrm{17} \\ $$$$… \\ $$$${the}\:{last}\:{one}\:{is}\:\mathrm{10}^{{n}} −\mathrm{1} \\ $$$$ \\ $$$${totally} \\ $$$$\frac{\left(\mathrm{10}^{{n}} −\mathrm{1}\right)−\left(\mathrm{10}^{{n}−\mathrm{1}} −\mathrm{1}\right)}{\mathrm{9}}=\mathrm{10}^{{n}−\mathrm{1}} \:{numbers} \\ $$
Commented by prakash jain last updated on 14/Oct/20
Thanks.
$$\mathrm{Thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *