Question Number 155856 by peter frank last updated on 05/Oct/21
$$\mathrm{How}\:\mathrm{many}\:\mathrm{natural}\:\mathrm{number}\:\mathrm{from} \\ $$$$\mathrm{1}\:\mathrm{to}\:\mathrm{900}\:\mathrm{which}\:\mathrm{are}\:\mathrm{not}\:\mathrm{divisible} \\ $$$$\mathrm{2},\mathrm{3}\:\mathrm{and}\:\mathrm{5} \\ $$
Answered by TheSupreme last updated on 05/Oct/21
$$\mathrm{2},\mathrm{3}\:{and} \\ $$$${m}.{c}.{m}\left(\mathrm{2},\mathrm{3}\:{and}\:\mathrm{5}\right)=\mathrm{30} \\ $$$${D}_{\mathrm{30}=} \lfloor\mathrm{900}/\mathrm{30}\rfloor=\mathrm{30} \\ $$$$ \\ $$$$\mathrm{2},\mathrm{3}\:{or}\:\mathrm{5} \\ $$$${D}_{\mathrm{2}} =\lfloor\mathrm{900}/\mathrm{2}\rfloor=\mathrm{450} \\ $$$${D}_{\mathrm{3}} =\lfloor\mathrm{900}/\mathrm{3}\rfloor=\mathrm{300} \\ $$$${D}_{\mathrm{5}} =\lfloor\mathrm{900}/\mathrm{5}\rfloor=\mathrm{180} \\ $$$${D}_{\mathrm{6}} =\lfloor\mathrm{900}/\mathrm{6}\rfloor=\mathrm{150} \\ $$$${D}_{\mathrm{10}} =…=\mathrm{90} \\ $$$${D}_{\mathrm{15}} =\mathrm{80} \\ $$$${D}_{\mathrm{30}} =\mathrm{30} \\ $$$${D}_{\mathrm{2},\mathrm{3}\:{or}\:\mathrm{5}} =\mathrm{450}+\mathrm{300}+\mathrm{180}−\mathrm{150}−\mathrm{90}−\mathrm{80}+\mathrm{30}= \\ $$$$=\mathrm{640} \\ $$
Commented by puissant last updated on 05/Oct/21
$${Sir}\:{you}\:{use}\:{which}\:{formula}.? \\ $$
Answered by mr W last updated on 05/Oct/21
$${numbers}\:{divisible}\:{by}\:\mathrm{30}: \\ $$$$\lfloor\frac{\mathrm{900}}{\mathrm{30}}\rfloor=\mathrm{30} \\ $$$${numbers}\:{divisible}\:{by}\:\mathrm{6}: \\ $$$$\lfloor\frac{\mathrm{900}}{\mathrm{6}}\rfloor−\mathrm{30}=\mathrm{120} \\ $$$${numbers}\:{divisible}\:{by}\:\mathrm{10}: \\ $$$$\lfloor\frac{\mathrm{900}}{\mathrm{10}}\rfloor−\mathrm{30}=\mathrm{60} \\ $$$${numbers}\:{divisible}\:{by}\:\mathrm{15}: \\ $$$$\lfloor\frac{\mathrm{900}}{\mathrm{15}}\rfloor−\mathrm{30}=\mathrm{30} \\ $$$${numbers}\:{divisible}\:{by}\:\mathrm{2}: \\ $$$$\lfloor\frac{\mathrm{900}}{\mathrm{2}}\rfloor−\mathrm{30}−\mathrm{120}−\mathrm{60}=\mathrm{240} \\ $$$${numbers}\:{divisible}\:{by}\:\mathrm{3}: \\ $$$$\lfloor\frac{\mathrm{900}}{\mathrm{3}}\rfloor−\mathrm{30}−\mathrm{120}−\mathrm{30}=\mathrm{120} \\ $$$${numbers}\:{divisible}\:{by}\:\mathrm{5}: \\ $$$$\lfloor\frac{\mathrm{900}}{\mathrm{5}}\rfloor−\mathrm{30}−\mathrm{60}−\mathrm{30}=\mathrm{60} \\ $$$${total}\:{numbers}\:{divisible}\:{by}\:\mathrm{2},\mathrm{3},\mathrm{5}: \\ $$$$\mathrm{30}+\mathrm{120}+\mathrm{60}+\mathrm{30}+\mathrm{240}+\mathrm{120}+\mathrm{60}=\mathrm{660} \\ $$$$ \\ $$$${numbers}\:{not}\:{divisible}\:{by}\:\mathrm{2},\mathrm{3},\mathrm{5}: \\ $$$$\mathrm{900}−\mathrm{660}=\mathrm{240} \\ $$
Commented by mr W last updated on 05/Oct/21
$$\lfloor\frac{\mathrm{900}}{\mathrm{7}}\rfloor=\mathrm{128}\:{means}\:{there}\:{are}\:\mathrm{128} \\ $$$${numbers}\:{from}\:\mathrm{1}\:{to}\:\mathrm{900}\:{which}\:{are} \\ $$$${divisible}\:{by}\:\mathrm{7}. \\ $$
Commented by puissant last updated on 05/Oct/21
$${Sir}\:{you}\:{use}\:{which}\:{formula}..? \\ $$
Commented by mr W last updated on 05/Oct/21
$${i}\:{used}\:{no}\:{special}\:{formula}. \\ $$
Commented by puissant last updated on 05/Oct/21
$${Thanks}\:{sir}.. \\ $$
Commented by peter frank last updated on 06/Oct/21
$$\mathrm{which}\:\mathrm{is}\:\mathrm{correct}\:\:\mathrm{640}\:\mathrm{or}\:\mathrm{240}\:? \\ $$
Commented by mr W last updated on 06/Oct/21
$${try}\:{to}\:{understand}\:{the}\:{solution},\:{then} \\ $$$${you}\:{can}\:{know}\:{what}\:{is}\:{the}\:{correct}\: \\ $$$${answer}. \\ $$