Menu Close

How-many-natural-numbers-n-2020-such-that-n-3-is-divisible-by-2-n-




Question Number 127861 by naka3546 last updated on 02/Jan/21
How  many  natural  numbers  n ≤ 2020 such  that  (n + 3)!  is  divisible  by  2^n  ?
Howmanynaturalnumbersn2020suchthat(n+3)!isdivisibleby2n?
Answered by floor(10²Eta[1]) last updated on 03/Jan/21
2^n ∣(n+3)!⇒k≥n  where k is the exponent of 2 in the prime   factorization of (n+3)!  but we know by legendre formula that  k=v_2 ((n+3)!)=Σ_(j=1) ^∞ ⌊((n+3)/2^j )⌋=((n+3−s_2 (n+3))/(2−1))  where s_p (n) is the sum of the digits of n in  the base p expansion of n    n≤k=n+3−s_2 (n+3)  ⇒s_2 (n+3)≤3  ⇒s_2 (n+3)∈{1, 2, 3}  I case: s_2 (n+3)=1  ⇒ n+3=2^a ≤1024, 0≤a≤10  n=2^a −3≤1021 ∴ 2≤a≤10  which gives us 9 cases  II case: s_2 (n+3)=2  ⇒n+3=2^a +2^b ≤1536, 10≥a>b≥0  n=2^a +2^b −3≤1533 ∴ 10≥a>b≥0  which gives us   10+9+8+...+2=54 cases  III case: s_2 (n+3)=3  ⇒n+3=2^a +2^b +2^c ≤1792, 10≥a>b>c≥0  n=2^a +2^b +2^c −3≤1789  and that gives  Σ_(n=1) ^9 ((n(n+1))/2)=165 cases  So on total we have 165+54+9=228   natural numbers n≤2020 such that  (((n+3)!)/2^n )∈Z    (if you consider 0 as natural number so  the answer 229)
2n(n+3)!knwherekistheexponentof2intheprimefactorizationof(n+3)!butweknowbylegendreformulathatk=v2((n+3)!)=j=1n+32j=n+3s2(n+3)21wheresp(n)isthesumofthedigitsofninthebasepexpansionofnnk=n+3s2(n+3)s2(n+3)3s2(n+3){1,2,3}Icase:s2(n+3)=1n+3=2a1024,0a10n=2a310212a10whichgivesus9casesIIcase:s2(n+3)=2n+3=2a+2b1536,10a>b0n=2a+2b3153310a>b0whichgivesus10+9+8++2=54casesIIIcase:s2(n+3)=3n+3=2a+2b+2c1792,10a>b>c0n=2a+2b+2c31789andthatgives9n=1n(n+1)2=165casesSoontotalwehave165+54+9=228naturalnumbersn2020suchthat(n+3)!2nZ(ifyouconsider0asnaturalnumbersotheanswer229)

Leave a Reply

Your email address will not be published. Required fields are marked *