How-many-natural-numbers-n-2020-such-that-n-3-is-divisible-by-2-n- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 127861 by naka3546 last updated on 02/Jan/21 Howmanynaturalnumbersn⩽2020suchthat(n+3)!isdivisibleby2n? Answered by floor(10²Eta[1]) last updated on 03/Jan/21 2n∣(n+3)!⇒k⩾nwherekistheexponentof2intheprimefactorizationof(n+3)!butweknowbylegendreformulathatk=v2((n+3)!)=∑∞j=1⌊n+32j⌋=n+3−s2(n+3)2−1wheresp(n)isthesumofthedigitsofninthebasepexpansionofnn⩽k=n+3−s2(n+3)⇒s2(n+3)⩽3⇒s2(n+3)∈{1,2,3}Icase:s2(n+3)=1⇒n+3=2a⩽1024,0⩽a⩽10n=2a−3⩽1021∴2⩽a⩽10whichgivesus9casesIIcase:s2(n+3)=2⇒n+3=2a+2b⩽1536,10⩾a>b⩾0n=2a+2b−3⩽1533∴10⩾a>b⩾0whichgivesus10+9+8+…+2=54casesIIIcase:s2(n+3)=3⇒n+3=2a+2b+2c⩽1792,10⩾a>b>c⩾0n=2a+2b+2c−3⩽1789andthatgives∑9n=1n(n+1)2=165casesSoontotalwehave165+54+9=228naturalnumbersn⩽2020suchthat(n+3)!2n∈Z(ifyouconsider0asnaturalnumbersotheanswer229) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-62322Next Next post: Question-127865 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.