Menu Close

how-many-natural-solution-are-there-for-x-2-y-2019-




Question Number 84047 by jagoll last updated on 09/Mar/20
how many   natural solution are there for   x^2  − y ! = 2019 .
howmanynaturalsolutionarethereforx2y!=2019.
Answered by naka3546 last updated on 09/Mar/20
1, sir  namely  (x, y) = (45, 3)
1,sirnamely(x,y)=(45,3)
Commented by jagoll last updated on 09/Mar/20
yes. 2019 + 3 ! = 2025   2019 + 6 = 45^2
yes.2019+3!=20252019+6=452
Answered by mind is power last updated on 10/Mar/20
⇒y!=x^2 −2019⇒x≥45  2019=3.673  case 1,y≥3  if y≥3⇒x^2 =2019+y!  3∣y! since y≥3  x^2 =3.673+y!  ⇒3∣x^2    since 3 is prim⇒3∣x  ⇒9∣x^2   ⇒x^2 =2019+y!≡0[9]  ⇒y!≡−2019[9]≡−2016−3[9]≡6[9]  ⇒y≤5     y=5⇒y!≡3(9)  y=4⇒y!≡6(9)  y=3⇒y!≡6(9)  ⇒y∈{3,4}  y=4⇒x^2 =2019+4!=2043 not possibl  y=3⇒x^2 =2019+6=2025⇒x=(√(2025))=45 got one  if y≤2  y=0or 1⇒x^2 =2019+1=2020 not possible  y=2⇒x^2 =2019+2⇒x=2021  we can use x≥45⇒x^2 ≥2025  y!+2019≥2025⇒x^2 ≥2025−2019=6⇒y≥3    so we use just case one  ⇒(x,y)∈{(45,3)}
y!=x22019x452019=3.673case1,y3ify3x2=2019+y!3y!sincey3x2=3.673+y!3x2since3isprim3x9x2x2=2019+y!0[9]y!2019[9]20163[9]6[9]y5y=5y!3(9)y=4y!6(9)y=3y!6(9)y{3,4}y=4x2=2019+4!=2043notpossibly=3x2=2019+6=2025x=2025=45gotoneify2y=0or1x2=2019+1=2020notpossibley=2x2=2019+2x=2021wecanusex45x22025y!+20192025x220252019=6y3soweusejustcaseone(x,y){(45,3)}

Leave a Reply

Your email address will not be published. Required fields are marked *