Menu Close

How-many-numbers-divisible-by-5-can-be-made-with-the-digits-2-3-4-and-5-where-no-digit-is-being-used-more-than-once-in-each-number-




Question Number 55119 by pieroo last updated on 17/Feb/19
How many numbers, divisible by 5, can  be made with the digits 2,3,4 and 5 where  no digit is being used more than once  in each number?
Howmanynumbers,divisibleby5,canbemadewiththedigits2,3,4and5wherenodigitisbeingusedmorethanonceineachnumber?
Commented by Tawa1 last updated on 17/Feb/19
For a number to be divisible by  5.  The number must end with 5.  ∴   for all the four digit number (2, 3, 4, 5).                3 × 2 × 1 (fixed 5)   =  6 ways                −  −  −  −  ∴   for three digit number (2, 3, 4, 5).                3 × 2 (fixed 5)   =  6 ways                −  −  −   ∴   for two digit number (2, 3, 4, 5).                3 (fixed 5)   =  3 ways                −  −     ∴   for one digit number (2, 3, 4, 5).                (only 5)   =  1 way                −      Therefore,     Number of numbers divisible by 5   =  6 + 6 + 3 + 1  Therefore,     Number of numbers divisibke by 5   =  16  numbers
Foranumbertobedivisibleby5.Thenumbermustendwith5.forallthefourdigitnumber(2,3,4,5).3×2×1(fixed5)=6waysforthreedigitnumber(2,3,4,5).3×2(fixed5)=6waysfortwodigitnumber(2,3,4,5).3(fixed5)=3waysforonedigitnumber(2,3,4,5).(only5)=1wayTherefore,Numberofnumbersdivisibleby5=6+6+3+1Therefore,Numberofnumbersdivisibkeby5=16numbers
Answered by math1967 last updated on 17/Feb/19
3!=6 (4 digit number)  P_2 ^3 =6(3digit numbers)   P_1 ^3 =3 (2digit numbers)   1digit number =1  total=6+6+3+1=16
3!=6(4digitnumber)P32=6(3digitnumbers)P31=3(2digitnumbers)1digitnumber=1total=6+6+3+1=16
Commented by pieroo last updated on 18/Feb/19
Thanks sir
Thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *